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Advancements in GPS radiotelemetry allow collection of vast data for a variety of species including those for which direct observations 
are typically not feasible. Predicting behavior from telemetry data is possible, but telemetry fix rate can influence inferences, and animal 
behavior itself can affect fix success. We use multinomial regression to predict behavior from GPS radiocollar data field validated with 
behavioral state information. Our study organism was a facultative carnivore, the grizzly bear (Ursus arctos) (n = 10) from a threatened 
population in Alberta, Canada, monitored during 2008–2010. Models using GPS cluster parameters alone successfully predicted ungulate 
consumption, whereas bear bedding was sufficiently identified by models that included site-level information. Predicting more complex 
behaviors required models incorporating both cluster parameters and habitat characteristics. No model reliably predicted vegetation 
feeding, probably because this activity is shorter than the time required for cluster formation. Models built using infrequent fix rates under-
estimated all behaviors, with bear presence at ungulate carcass sites least sensitive to fix rate variability. Behavior influenced fix success, 
with highest fix acquisition occurring when bears fed on vegetation. Placing predictions into a conservation context, we show that grizzly 
bears modify their behavior as they move through a landscape with complex human-activity patterns on reclaimed open-pit mines, foothill, 
and mountain regions. The modeling approach we tested needs further applications across species and ecosystems including behavioral 
monitoring, quantifying activity budgeting, and identifying areas/habitats important for specific behaviors that may warrant conservation.

Key words: bedding, behavioral state, fix rate, fix success, grizzly bear, habitat, mining, multinomial model, telemetry.

IntroductIon
Patterns of  animal distribution in space and time are a product 
of  the underlying process of  animal movement (Turchin 1998; 
Mueller and Fagan 2008; Nathan et  al. 2008). Identifying behav-
ioral states along an animal’s movement path is straightforward 
when visual observation of  a focal animal is possible (Gillingham 
and Klein 1992; Bates and Byrne 2009; Hayward et  al. 2009). 
Directly observing an individual to record its behavior is a com-
mon and effective method for investigating animal behavior and 
the least prone to errors of  assigning true behavioral state (Loettker 
et al. 2009; Shamoun-Baranes et al. 2012).

In contrast, observing the behavior of  rare, cryptic, and wide-
ranging animals that inhabit difficult study environments presents 
major challenges to researchers. Such species can be difficult to 
locate often resulting in small sample sizes (Caro 2007) and poten-
tially data insufficient for statistical inference. For study animals 
that pose threats to researcher safety, such as large terrestrial mam-
mals, investigating behavior via direct observation adds another 
level of  difficulty.

Considerable recent advances in GPS radiocollar technologies 
allow tracking of  animals for long sampling periods, providing 
large data sets of  georeferenced locations at time intervals pro-
grammed by the researcher (Cagnacci et  al. 2010). On direct or 
remote data retrieval from the radiocollar, the GPS locations can 
be used to investigate habitat selection (Hebblewhite and Haydon 
2010), spatiotemporal movements (Nathan et al. 2008), or habitat 
influences on animal movement (Schick et al. 2008). By setting the 
GPS acquisition schedule at regular time intervals, radiocollars can 
collect data that fit the focal sampling with instantaneous recording 
methodology used in animal behavior studies (Martin and Bateson 
2007). Despite this opportunity, few studies have successfully esti-
mated mammalian behavioral states from GPS radiocollar data. To 
predict movement, some studies have decomposed an individual’s 
movement trajectory into a broad set of  movement bouts based 
on rates of  movement (Johnson et al. 2002). Others have inferred 
behavioral states based on time required for an animal to first move 
out of  a circle centered on a location along the path (Frair et  al. 
2005) or total time spent in the vicinity of  a location (Barraquand 
and Benhamou 2008). Patterns of  animal space and behavior 
can also be investigated using autocorrelation analysis (Wittemyer 
et  al. 2008; Boyce et  al. 2010) or generalized additive models for Address correspondence to B. Cristescu. E-mail: cristesc@ualberta.ca.
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either net squared displacement (Fryxell et al. 2008) or step length 
(Ciuti et  al. 2012). Biotic and abiotic influences along the move-
ment path have also been studied (Fortin et al. 2005), sometimes by 
incorporating a hidden behavioral state in the analytical procedure 
(Forester et al. 2007). The latter approach represents an application 
of  state-space modeling, a framework increasingly used for mod-
eling cryptic behavior of  marine mammals from satellite-linked 
datalogger data (Jonsen et  al. 2005; Breed et  al. 2009). Bayesian 
state-space models have been shown to be capable of  high classifi-
cation accuracy for behavioral states from animal movement paths 
(Beyer et al. 2013).

All the above studies focused on large herbivores or marine 
mammals, likely reflecting greater availability of  detailed move-
ment data for these species compared with terrestrial carnivores, 
which are often difficult to capture because of  rarity, cryptic nature, 
and/or potential danger to researchers (however, see carnivore 
studies by Dickson et  al. 2005; Roever et  al. 2010; Byrne and 
Chamberlain 2012). In carnivore studies in which authors attempt 
to derive behavior from GPS relocation data, the main goal has 
often been to identify GPS location clusters indicative of  predation 
events (Merrill et al. 2010). Clusters form when an animal spends 
a certain amount of  time within a site of  a given radius, where 
time and radius are specified by the researcher and should be tai-
lored to the behavior of  the study species and field conditions. For 
example, a large kill might necessitate a longer time to consume 
and can result in multiple smaller clusters for the same carcass 
(Tambling et al. 2012). Less frequent relocation frequencies (here-
after, fix rates) might minimize the problem of  multiple clusters for 
the same kill, but could result in decreased detection of  small car-
casses, which likely require shorter consumption time (Bacon et al. 
2011). Regardless of  fix rate, if  the predator is guarding the prey 
and the carcass is not moved, the cluster will likely have a small 
radius. Once clusters have been identified, most authors use logis-
tic regression with a binomial response variable to model kill pres-
ence/absence at location clusters based on cluster and/or habitat 
characteristics (e.g., Webb et al. 2008; Knopff et al. 2009; Tambling 
et  al. 2010; Pitman et  al. 2012). Another example of  the way in 
which field-based knowledge informs pure telemetry data is to 
separate movement behavior from clustered denning, bedding, and 
carcass-processing relocations by wolves (Gurarie et al. 2011).

Early attempts to identify location clusters included assigning 
circles of  given radii around carnivore GPS locations (Sand et al. 
2005) and using software originally conceived to identify epidemi-
ological clusters (Webb et  al. 2008). The publication of  a cluster 
identification algorithm to detect cougar (Puma concolor) kill clusters 
(Knopff et al. 2009), which is easily modifiable to address individ-
ual study aims and biology of  other species, represented a break-
through for animal ecology researchers interested in identifying 
carnivore kills from GPS radiocollar data. However, variability in 
proportion of  relocations successfully acquired by the GPS radio-
collar (hereafter, fix success) can lead to misinterpretation of  biolog-
ical data (Frair et al. 2010; Mattisson et al. 2010). In an attempt to 
account for poor fix success, some researchers have positioned GPS 
radiocollars at stationary locations in different habitats (Graves and 
Waller 2006; Heard et al. 2008), applying the resulting corrections 
to radiocollar data from monitored animals. Nonetheless, certain 
animal behaviors could affect fix success (Mattisson et al. 2010), and 
no study has assessed fix success based on GPS fixes from mobile 
animals in conjunction with knowledge of  animal behavior from 
field settings (Frair et  al. 2010). For indisputable knowledge, such 
investigations should be performed by directly observing the GPS-
radiocollared animal and recording its behavior. In practice, field 

visitation of  GPS radiocollar locations after the animal’s departure 
will generally be more logistically feasible although subjected to 
uncertainty over “post hoc” recording of  behavior. Realistic assess-
ments of  fix success from GPS collared animals will be based on 
the assumption that the desired behaviors can actually be viewed or 
identified post hoc, which will not be possible for some behaviors.

We extend the binary logistic regression framework typically 
applied in carnivore studies to include a multinomial response 
that reflects the ecology of  facultative and obligate diets as well as 
bedding behavior. This enables identification of  multiple behav-
ioral states and is readily applicable to carnivores when the goal 
is to identify behavioral states not restricted to kill consumption. 
Building on the Knopff et al. (2009) cluster algorithm, we present 
an application of  the multinomial method to the study of  a faculta-
tive carnivore (grizzly bear, Ursus arctos) from a threatened popula-
tion at the southeastern edge of  this species’ range in Canada. Our 
main objective is to predict 4 grizzly bear behavioral states: vegeta-
tion feeding, bedding, vegetation feeding with bedding, and carcass 
feeding with or without bedding. In addition, we vary the fix rate 
to estimate its effect on detecting different behavioral states and test 
whether behavior affects fix success in specific habitat types. We dis-
cuss the findings on bear behavior in relation to human activity and 
habitat characteristics and highlight conservation implications.

MaterIals and Methods
Study area and study animals

We carried out the study in a 3200-km2 area located in west-cen-
tral Alberta, Canada (approximate central coordinates 53°05′N, 
117°25′W), which is included in the broader area described 
by Munro et  al. (2006) (Figure  1; details in Supplementary 
Appendix S1). Sampled grizzly bears persist at one of  the low-
est densities recorded for the Alberta threatened grizzly bear 
population, with 4.79 bears/1000 km2 based on DNA sampling 
(Boulanger et  al. 2005). In 2008–2010, with assistance from 
the Foothills Research Institute Grizzly Bear Program (Hinton, 
Alberta), we captured and deployed remotely downloadable 
GPS radiocollars (Telus UHF; Followit, Lindesberg, Sweden) 
on 12 adult grizzly bears. Captures occurred in accordance 
with the Program’s capture, handling, and sampling protocol. 
The protocol and progress reports were annually reviewed and 
approved by the University of  Alberta Animal Care and Use 
Committee for Biosciences (558804). We attempted to sample 
the bear population randomly in the foothills (elevation <1700 
m), mountains (≥1700 m), and on reclaimed mines, using heli-
copter darting and ground capture (culvert traps and limited 
leghold snaring) (Cattet et al. 2008).

Two large male bears dropped their collars within a month 
from capture and were excluded from analyses. We monitored the 
remaining 10 bears (nmales = 4; nfemales = 6) for a total of  67.1 bear-
months (6.7 ± 4.1 months per bear). One female had cubs in 2009 
but was single in 2010. Another female was only monitored in 2010 
when she had cubs. The other 4 females did not have cubs during 
the monitoring period. Radiocollars were set to acquire a location 
hourly during March 15–December 1, when bears were primarily 
outside their winter dens. This fix rate was a compromise between 
sufficiently detailed data for tracking behaviors and radiocollar bat-
tery life. To acquire data for field visitation of  sites used by bears 
each month, we approached every bear on foot or via fixed-wing 
aircraft or helicopter and triggered its radiocollar to send GPS data 
remotely via very high frequency transmission.
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GPS cluster visitation

We sampled telemetry clusters for field recording of  bear behav-
ior by running the Python algorithm originally designed for cou-
gar kill site identification (Knopff et al. 2009), which we modified 
to include 50-m seed cluster radius because we considered that it 
was not feasible to search radii >50 m (i.e., >7850 m2). The algo-
rithm identified pairs of  GPS fixes from a bear’s movement trajec-
tory that were within 50 m and occurred within 6  days of  each 
other and computed a centroid for these points. It then iteratively 
searched for additional fixes within the same spatial–temporal con-
straints, using the original centroid as reference and recalculating 
the centroid based on each additional point. Because of  logistical 
limitations, for each bear during each month, we attempted to visit 
the largest 4 clusters and randomly picked other clusters, provided 
they had ≥3 telemetry relocations within a temporal window of  
6 days.

At the cluster centroid, 2-person crews systematically searched 
for evidence of  bear behavior on a 50-m radius using protocols 
adapted from Munro et al. (2006) who studied the same bear popu-
lation. A 20 × 20 m square plot (oriented north to south) was cen-
tered on the most time-consuming bear activity, where ungulate 
carcass feeding (not differentiating between predation and scaveng-
ing) was designated as the lengthiest activity, followed by bedding 
and vegetation feeding. All bear behavior sign and habitat charac-
teristics within the plot were recorded (details in Supplementary 
Appendix S2).

Grizzly bear behavior predictions

We modeled bear behavior assigned during GPS cluster field 
visitation using STATA v.11.2 (StataCorp, College Station, TX). 
Behavior was coded as 1)  vegetation feeding (root digging, graz-
ing, or berry feeding), 2) bedding, 3)  vegetation feeding with bed-
ding, and 4) carcass feeding with or without bedding. Although we 
initially attempted to create separate models for each bear social 
group (males, females, and females with cubs), we ran into conver-
gence problems because of  insufficient sample sizes and all analyses 
reported herein are for data pooled across social groups.

We applied the framework detailed in Zuur et al. (2009) to decide 
whether to use a fixed-effects modeling approach or more complex 
mixed models incorporating fixed effects and a random intercept for 
bear unique identity (Bear_id). We used a likelihood ratio (LR) test 
to compare the global fixed-effects and global mixed-effects models 
(incorporating all a priori relevant predictor variables). Fixed- and 
mixed-effects models were implemented using generalized linear 
latent and mixed models (STATA’s gllamm) with multinomial logis-
tic regression (mlogit) link. The mixed-effects model did not show 
any performance improvement over the fixed-effects model (LR: 
χ2 = 0.00, degrees of  freedom [df] = 1, P = 1.00); therefore, we used 
multinomial regression with fixed effects for all analyses.

We formulated a priori hypotheses on model variables that 
might influence model fit and grouped them into 3 sets: behavior 
(based on location cluster features), habitat (only habitat features), 
and behavior and habitat (based on both cluster and habitat char-
acteristics). Behavioral variables intrinsic to the cluster were as 
follows: number of  locations in cluster divided by the proportion 
of  successful fixes during cluster persistence to account for vary-
ing fix success (Pointscl; hypothesized to be biologically indicative 
of  behaviors with long durations such as ungulate consumption or 
bedding), a categorical variable for whether cluster spanned 24-h 
(1) or more (0) (24hcl; distinguishing all behaviors from consump-
tion of  subadult and adult ungulates), cluster fidelity defined as a 
ratio of  number of  locations at cluster divided by number of  loca-
tions away (>50 m) from the cluster during the cluster duration 
(Fidelitycl; revisitation likely indicative of  an attractant such as a 
large carcass), the average distance from each cluster location to the 
centroid of  the cluster (Avg_distcl; greater distance expected to be 
indicative of  movements within the cluster area, such as vegetation 
feeding), and cluster radius defined as the maximum distance from 
the centroid to the outermost point in the cluster (Radiuscl; small-
est radius expected for fully stationary behavior such as bedding). 
Habitat variables in candidate models were as follows: land cover 
class (Hab_class)—including barren and herbaceous (1), shrub (2), 
conifer forest (3), and mixed forest (4)—and abiotic habitat covari-
ates (Hab_abiot), including slope in percentage (Slope) and site 
severity index (Nielsen and Haney 1998) (SSI):

 SSI sin Aspect
Slope

= + ×( )
%

225
45

 

For each model set (behavior, habitat, and behavior and habitat), we 
also tested the potential influences on bear behavior caused by sea-
son (Season), time of  day (Time_day), and location (Land_class) on 
the landscape. Seasonal classification cutoffs followed Nielsen et al. 
(2004) and included spring (den emergence to June 14) (1), summer 
(June 15–August 7) (2), and autumn (August 8 to den entrance) (3). 
Time of  day was computed based on the first location within the 
cluster and classified as diurnal (sunrise to sunset) (1), crepuscular 
(morning twilight to sunrise and sunset to evening twilight) (2), or 

N
0 12.5 25 Km

Study area
boundary

Road

Hinton

Figure 1
Study area for grizzly bear behavior in west-central Alberta, Canada, 
including major roads (black lines), towns (empty dots), and mine 
disturbance areas: reclaimed mines (crosshatch) and active mine (black dots). 
Shading within study area boundary (dashed line) represents mountains 
(≥1700 m; gray) with the rest being foothills (<1700 m; white). Movement 
trajectories of  GPS-radiocollared grizzly bears are color coded for each 
individual, with monitoring duration varying between animals. Segments 
not connected to main paths depict instances when the GPS collar did not 
acquire a relocation fix.
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nocturnal (evening twilight to morning twilight) (3). The time of  
day variable was used to account for potential onset of  a specific 
animal behavior in a certain time period during a given 24-h cycle. 
For example, bears might be more likely to rest after sunset or for-
age on vegetation during daylight hours. Sunrise, sunset, and civil 
twilight tables (http://www.cmpsolv.com/los/sunset.html, accessed 
17 October 2011) corresponded to study area location. Finally, we 
accounted for cluster location based on a combination of  eleva-
tion and land use, distinguishing between reclaimed open-pit mines 
regardless of  elevation (1), foothills (<1700 m) (2), and mountains 
(≥1700 m) (3). Bear diet composition and resting-site selection dif-
fer among these 3 locations (Cristescu et al. 2013), which also have 
varying human activity (see Study area and study animals).

We tested for correlations between predictor variables and 
excluded highly correlated variable combinations (|r| >0.6) from 
all candidate models. Cluster radius was correlated with cluster 
average distance; therefore, we tested 2 sets of  candidate models, 
one for each of  these 2 variables. The best models based on log like-
lihood were the ones incorporating cluster average distance; there-
fore, the respective model set was withheld and the cluster radius 
variable was dropped. All models were fitted by specifying the 
robust standard error to estimate asymptotically correct variances. 
For each model in each set, we calculated Akaike’s Information 
Criterion for small sample sizes (AICc). We ranked models within 
sets based on the difference in AICc between a given model and the 
model with the lowest AICc (∆AICc) as well as model weights. We 
checked for potential collinearity between predictor variables for 
all top models using variance inflation factors (VIF) and calculated 
percent deviance explained for each top model.

We assessed model fit with Wald chi-square tests and plotted 
Pregibon leverage values against predicted probabilities of  specific 
behaviors to detect potential observations that disproportionately 
influenced fit. The multinomial output with 4 categories for the 
response variable included 4 probabilities, one for each behavior. 
We used the probability output from the top multinomial regres-
sion model to assign type of  behavior at a cluster, with assigned 
behavior being the one corresponding to the largest probability. We 
assessed the predictive capacity of  the top models for each of  the 
3 sets (behavior, habitat, and behavior and habitat) by using 4-fold 
cross-validation, based on Huberty (1994), at a 75/25 model train-
ing-to-testing ratio.

Influence of fix rate on behavioral inferences

GPS radiocollars required users to preprogram relocation fre-
quency (fix rate). To assess how fix rate influences outcome of  the 
cluster algorithm, and hence behavioral inferences, we reran the 
algorithm maintaining spatial (50 m) and temporal (6  days) con-
straints but varying fix rate as follows: 1 (baseline), 2, 4, 6, 8, and 
12 h. Using behavioral data based on model predictions, we cal-
culated proportion of  different behaviors detected by the cluster 
algorithm at different fix rates. We assumed the algorithm correctly 
identified behavior if  the cluster centroid was located within 50 m 
of  the actual behavior location. We inspected the confidence lim-
its around the proportion of  behaviors identified by the algorithm 
for each fix rate to assess the rate necessary to identify specific 
behaviors.

Influence of behavior on fix success

GPS radiocollar fix success was high (mean ± standard deviation 
[SD], 93 ± 11% for clusters visited in the field). We took advantage 

of  behavior data collected during field visitation to test the hypoth-
esis that behavior of  the radiocollared animal influences fix suc-
cess. We used generalized linear models (STATA’s glm) where the 
response variable (% fix success) was rescaled to proportion fix suc-
cess (values in the [0,1] range) to allow application of  models in 
the binomial family with logit link. Proportion successful fixes for 
relocation clusters were calculated as:

 
Fix success

Fixes Away
Theoreticalcl

cl cl

cl

=
+

 

where Fixescl are fixes successfully acquired at the cluster; Awaycl 
are fixes acquired between the first and last fix in the cluster, but 
not at the cluster; and Theoreticalcl represents the total number of  
fixes between the first and last fix in the cluster, as expected given 
100% fix success. To obtain conservative estimates by making anal-
yses relevant to the scale at which we had recorded bear behav-
ior and habitat class  in the field, we restricted the data to clusters 
with radii <15 m and with 0 fixes away from the cluster as per 
the cluster algorithm output. We estimated univariate models with 
behavior as independent variable, separately for each habitat, for a 
total of  4 models. The behavioral variable was categorical and had 
the same classes as described under “Grizzly bear behavior predic-
tions.” Robust standard errors were used to account for potential 
misspecification of  the distribution family. For each model, we 
computed VIF, calculated percent deviance, and assessed fit by 
inspecting deviance residuals for potential outliers or influential 
observations. Finally, we correlated predicted values to observed 
values of  the dependent variable, considering high correlations 
indicative of  good predictive power (Zheng and Agresti 2000).

Grizzly bear behavior in a multiple-use landscape

We used predictions from the most accurate of  the 3 top models 
across sets (behavior at cluster, habitat at cluster, and behavior and 
habitat at cluster) to calculate frequency of  occurrence of  the spe-
cific behaviors (vegetation feeding, bedding, vegetation feeding with 
bedding, and carcass feeding) by land designation. Predictive accu-
racy among top models was assessed based on the results of  4-fold 
cross-validation. For each behavioral state, we calculated differences 
between observed and expected frequencies of  occurrence between 
land designations using chi-square analyses, for a total of  4 tests. 
We set expected frequencies to be equal among land designations 
and applied a correction factor to each observed frequency value to 
account for unbalanced sampling design between land designations 
(details in Supplementary Appendix S3).

results
During the 3-year study, we visited 550 grizzly bear GPS location 
clusters. Cluster site visits occurred on average 40.6 (±15.5) days 
following the first fix in the cluster due to logistical constraints of  
the study area. Additionally, we aimed to minimize safety concerns 
arising from our initial experiences of  surprising bears on foot at 
large ungulate kill clusters even 3 weeks after cluster initiation.

We found evidence of  bear behavior on average 10.6 ± 18.3 m 
away from the geometric center of  the cluster. Rarely detected or 
unknown bear behaviors as described below occurred at 49 clusters 
(8.9%), which were excluded from analyses to minimize concerns 
over predictive ability. Nine excluded clusters had unknown bear 
activity, and 34 clusters had rodent digging, ant consumption, or 
tree rubbing. We also eliminated 4 clusters with complex behavior 
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including bedding, carcass, and vegetation feeding and 2 clusters 
on active mine sites. The final data set of  501 field validated clus-
ters (mean ± SD, 50.1 ± 34.0 clusters/bear) included 4 behavioral 
states: vegetation feeding (n  =  53), bedding (n  =  232), vegetation 
feeding with bedding (n  =  83), and carcass feeding with/without 
bedding (n = 133). Most clusters visited were in the foothills (nclus-

ters  =  247, 49.3%) and mountains (nclusters  =  179, 35.7%), with 75 
clusters (15%) visited on reclaimed mines.

Grizzly bear behavior predictions

Of  the total of  43 models considered (behavior at cluster, nmod-

els  =  13; habitat at cluster, nmodels  =  11; and behavior and habitat 
at cluster, nmodels = 19), only the top model for each a priori defined 
set of  hypotheses received support, with all other models receiv-
ing no support (∆AICc > 10)  (Supplementary Tables S1–S3). The 
top 3 models were global models that included 7 predictor variables 
(behavior set and habitat set) and 11 predictor variables (behavior 
and habitat set). Each of  these top models had an AICc weight 
of  1 within its respective set, explaining up to 35.7% of  deviance 
(Table 1). Although the top model from the behavior and habitat 
set explained the highest deviance, it was not the best at predicting 
the field observed behavioral composition across all 4 behavioral 
states considered (Table 2).

At the level of  individual bears, proportion of  correctly classified 
behavioral states varied to a certain extent between animals. The 
largest as well as smallest variation occurred for individuals with 
small associated sample sizes (Supplementary Figures S1–S3). We 
summarize below strong patterns of  behavioral state occurrence as 
predicted by the top 3 models and report all patterns in Tables 3–5. 
According to model predictions, clusters corresponded primarily to 
feeding on vegetation and bedding, or bedding alone, with fewer 
clusters representing vegetation feeding or ungulate consumption, 
respectively.

Vegetation feeding
Vegetation feeding was poorly predicted by all models, with 
the habitat model being slightly better than the other models 
(0.18 ± 0.20). Vegetation feeding clusters averaged 5 ± 2.8 locations, 
and this behavior was less likely to occur compared with bedding 
if  clusters included a large number of  locations (Tables 3 and 5). 
Vegetation feeding clusters had highest cluster average distances 
of  all behaviors (14.9 ± 6.8 m). Vegetation feeding was less likely in 
conifer forest compared with bedding (Table 4). Based on all 3 top 
models, clusters occurring in the autumn were less likely to include 
vegetation feeding behavior than those in spring. According to the 
2 models that included behavior, clusters occurring in summer were 

Table 1
Model structure and deviance for multinomial models predicting grizzly bear behavior at GPS radiocollar location clusters in west-
central Alberta, Canada (2008–2010)

Model set Variables Ki −2LL AICc Δi wi % dev. explained

Behavior at cluster
 Top Pointscl + 24hcl + Fidelitycl + Avg_distcl + Season + Time_day 

+ Land_class 
8 899.7 916.0 0.0 1.00 27.8

 Null 1 1246.5 1248.5 332.5 0.00 0.0
Habitat at cluster
 Top Hab_class + Slope + Slope2 + SSI + Season + Time_day + 

Land_class
8 1029.5 1045.8 0.0 1.00 17.4

 Null 1 1246.5 1248.5 202.8 0.00 0.0
Behavior and habitat at cluster
 Top Pointscl + 24hcl + Fidelitycl + Avg_distcl + Hab_class + Slope + 

Slope2 + SSI + Season + Time_day + Land_class
12 801.5 826.1 0.00 1.00 35.7

 Null 1 1246.5 1248.5 422.4 0.00 0.0

Top models for each candidate set are reported, as these were the only models that received support (wi = 1.00 and ΔAICc < 10). The null model also is 
reported for comparison. Model complexity (number of  parameters) is given by Ki, deviance is given by −2LL (where LL is Log Likelihood), and % dev. 
explained is the percentage deviance explained. Model sets included a priori variable combinations with/without season, time of  day, and land class.

Table 2
Proportion of  the true composition of  grizzly bear behavioral states predicted by top multinomial models for behavior at cluster, 
habitat at cluster, and behavior and habitat at cluster

Model set Behavioral state

4-Fold cross-validation

Mean SDPartition 1 Partition 2 Partition 3 Partition 4

Behavior at cluster Veg w/o Bed 0.00 0.00 0.05 0.00 0.01 0.03
Bed 0.39 0.00 0.75 0.48 0.40 0.31
Veg w Bed 0.61 0.90 0.50 0.50 0.63 0.19
Carcass w or w/o Bed 0.48 0.48 0.48 0.47 0.48 0.01

Habitat at cluster Veg w/o Bed 0.38 0.00 0.32 0.00 0.18 0.20
Bed 0.97 0.56 0.92 0.54 0.75 0.23
Veg w Bed 0.00 0.70 0.23 0.61 0.38 0.33
Carcass w or w/o Bed 0.04 0.00 0.00 0.00 0.01 0.02

Behavior and habitat at cluster Veg w/o Bed 0.08 0.00 0.26 0.00 0.09 0.12
Bed 0.37 0.00 0.53 0.37 0.32 0.22
Veg w Bed 0.65 0.95 0.82 0.78 0.80 0.12
Carcass w or w/o Bed 0.37 0.31 0.32 0.22 0.31 0.06

Data were acquired in 2008–2010 in west-central Alberta and randomly partitioned (n = 4) without replacement. A value of  1.00 for 4-fold cross-validation 
represents correct prediction. Veg, vegetation feeding site (root digging, grazing, berry foraging); Bed, bedding/resting site; Carcass, mammal carcass; w, with; 
w/o, without.
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less likely to represent vegetation feeding than spring clusters. Based 
on the habitat, and behavior and habitat models, vegetation feeding 
clusters were more likely in the mountains, likely reflecting avail-
ability of  bear foods (vegetative foods more available than animal 
foods in the mountains).

Bedding
The habitat model was the best at predicting bedding alone 
(0.75 ± 0.23). Bedding clusters averaged 7 ± 4.5 locations, and clus-
ter average distance was 12.2 ± 6.1 m.

Vegetation feeding with bedding
Based on 0.80 mean predicted proportion of  true composition and 
low variability between partitioned data sets (SD = 0.12), the behav-
ior and habitat model was the best for predicting vegetation feeding 
with bedding. Vegetation feeding with bedding was more likely to 
occur when clusters had many locations (Tables 3 and 5) and clus-
ters with this behavioral state had 9 ± 7.9 locations. Vegetation feed-
ing with bedding clusters were less likely in conifer forest compared 
with bedding (Table 4). Based on the behavior model, clusters rep-
resenting vegetation feeding with bedding were predicted to occur 

Table 3
Estimated coefficients (βi), robust standard errors (SE), and 95% confidence intervals (CIs) for the top multinomial model based on 
behavior at cluster, as assessed by Δi and wi

Variable

Vegetation feeding Vegetation feeding with bedding Ungulate carcass w/without bedding

βi Robust SE

95% CI

βi Robust SE

95% CI

βi Robust SE

95% CI

Lower Upper Lower Upper Lower Upper

Cluster
 Pointscl −0.543 0.105 −0.750 −0.337 0.092 0.045 0.003 0.181 0.157 0.049 0.061 0.254
 24hcl −1.185 0.639 −2.437 0.067 0.320 0.522 −0.703 1.343 −0.594 0.483 −1.541 0.353
 Fidelitycl 0.003 0.008 −0.013 0.020 −0.002 0.003 −0.008 0.004 −0.007 0.003 −0.013 −0.000
 Avg_distcl 0.123 0.033 0.058 0.188 −0.031 0.026 −0.082 0.020 −0.073 0.027 −0.127 −0.020
Season
 Summer −0.939 0.443 −1.807 −0.071 0.142 0.374 −0.590 0.874 −0.494 0.360 −1.200 0.212
 Autumn −1.708 0.552 −2.790 −0.626 0.091 0.368 −0.631 0.813 −1.042 0.380 −1.787 −0.297
Time_day
 Crepuscular 0.194 0.528 −0.840 1.228 0.824 0.368 0.103 1.545 −1.266 0.495 −2.236 −0.296
 Nocturnal −0.805 0.463 −1.712 0.101 0.176 0.322 −0.456 0.807 −1.014 0.382 −1.763 −0.265
Land_class
 Foothills −0.661 0.548 −1.736 0.414 −1.072 0.389 −1.834 −0.310 −0.157 0.447 −1.032 0.719
 Mountains 0.480 0.490 −0.480 1.439 −0.120 0.370 −0.845 0.605 −0.759 0.522 −1.782 0.264

Estimates for which the CI did not overlap 0 are given in bold. Bedding behavior was withheld as a reference category in the dependent variable. For the 
independent variables, spring (Season), diurnal (Time_day), and reclaimed mine (Land_class) were withheld as reference categories.

Table 4
Estimated coefficients (βi), robust SEs, and 95% CIs for the top multinomial model based on habitat at cluster, as assessed by Δi and wi

Variable

Vegetation feeding Vegetation feeding with bedding Ungulate carcass w/without bedding

βi Robust SE

95% CI

βi Robust SE

95% CI

βi Robust SE

95% CI

Lower Upper Lower Upper Lower Upper

Hab_class
 Shrub 0.711 0.781 −0.819 2.241 −0.451 0.579 −1.585 0.684 0.121 0.768 −1.384 1.627
 Conifer  
 forest

−2.295 0.649 −3.567 −1.023 −1.706 0.453 −2.593 −0.818 −0.260 0.587 −1.411 0.890

 Mixed  
 forest

−0.909 0.885 −2.643 0.825 −0.259 0.628 −1.491 0.973 0.080 0.699 −1.290 1.449

Hab_abiot
 Slope −0.021 0.031 −0.081 0.040 0.024 0.020 −0.015 0.062 −0.040 0.018 −0.076 −0.004
 Slope2 0.000 0.000 −0.001 0.001 −0.000 0.000 −0.001 0.000 0.000 0.000 −0.001 0.001
 SSI −0.387 0.263 −0.903 0.128 0.079 0.225 −0.362 0.521 0.113 0.304 −0.483 0.709
Season
 Summer 0.095 0.417 −0.723 0.913 0.149 0.375 −0.586 0.884 −0.664 0.315 −1.282 −0.047
 Autumn −1.508 0.562 −2.610 −0.406 0.205 0.383 −0.547 0.956 −0.958 0.348 −1.640 −0.277
Time_day
 Crepuscular −0.080 0.559 −1.175 1.015 0.662 0.375 −0.074 1.397 −1.269 0.447 −2.145 −0.392
 Nocturnal −0.846 0.443 −1.716 0.023 −0.042 0.318 −0.665 0.581 −1.192 0.294 −1.769 −0.615
Land_class
 Foothills −0.192 0.712 −1.587 1.204 −0.141 0.462 −1.046 0.763 0.208 0.486 −0.745 1.161
 Mountains 1.419 0.647 0.150 2.687 0.630 0.439 −0.230 1.490 −0.338 0.503 −1.323 0.648

Estimates for which the CI did not overlap 0 are given in bold. Bedding behavior was withheld as a reference category in the dependent variable. For the 
independent variables, barren/herbaceous class (Hab_class), spring (Season), diurnal (Time_day), and reclaimed mine (Land_class) were withheld as reference 
categories.
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more when the cluster started during crepuscular periods. Lastly, 
the behavior model predicted that vegetation feeding with bedding 
clusters were less likely in the foothills.

Carcass feeding with/without bedding
The behavior model was best at predicting ungulate consumption 
(0.48 ± 0.01). Carcass feeding was more likely to occur when clus-
ters had many locations (Tables 3 and 5), with ungulate consump-
tion clusters having 26 ± 26.9 locations. Bears were more likely to 
show fidelity to bedding sites (5.5 ± 3.7) compared with carcass 
sites (8.7 ± 13.8) (Tables 3 and 5). Cluster average distance also was 
lower than the corresponding vegetation feeding measure when 
bears fed on a carcass (13 ± 5.7 m) (Tables 3 and 5). The habitat 
at cluster model predicted that ungulate consumption clusters were 
more likely as slope decreased. Based on all 3 top models, clusters 
occurring in the autumn were less likely to include ungulate con-
sumption behavior than those in spring. In addition, the habitat 
model predicted carcass feeding clusters to occur less frequently in 
summer than in spring. All models predicted ungulate consumption 
clusters to occur less when clusters were initiated during crepuscu-
lar and nocturnal periods compared with daytime.

Influence of fix rate on behavioral inferences

Hourly step length for the bears monitored in our study was 
1030 ± 259 m. Decreasing fix rate from 1 to 2 h resulted in a mean 
drop in detection of  at least 30% across vegetation feeding, bed-
ding, and vegetation feeding with bedding, respectively (Figure 2). 
Further dropping the fix rate to 4 h resulted in less than 40% of  
clusters still detected for these 3 behaviors. When the fix rate was 
dropped to 6 h, a maximum of  25% of  clusters were still detected. 
Further dropping to 8 h resulted in up to 15% of  cluster detection, 
with 12-h fix rate only preserving approximately 10% of  clusters.

Carcass feeding with/without bedding
Ungulate feeding behavior was least sensitive to fix rate decrease, with 
80% of  ungulate consumption clusters still detected at fix rates of  2 
and 4 h. Further decreases in fix rate resulted in detection below 70%, 
but even a 12-h fix rate still resulted in detection of  almost 50% of  
ungulate feeding clusters. These relatively high mean retention rates 
for carcass clusters are even more substantial if  only the top ungulate 
consumption predictive model (behavior at cluster) is considered.

Influence of behavior on fix success

Vegetation feeding
Of  all behavioral states, cluster fix success was highest at vegetation 
feeding sites, averaging 98.1 ± 5.2%.

Bedding
Fix success at bedding sites was 93.2 ± 10.8%. When we controlled 
for habitat type, closed habitats (shrub, conifer, and mixed forest) 
had lower fix success when bears bedded compared with when they 
fed on vegetation only (Table 6).

Vegetation feeding with bedding
Fix success was 92.6 ± 11.3% at vegetation feeding with bedding sites. 
Closed habitats had lower fix success when bears fed on vegetation and 
bedded compared with when they fed on vegetation only (Table 6). In 
open habitats (barren land and grassland), fix success was also lower 
for vegetation feeding and bedding behavior when compared with veg-
etation feeding alone. However, the latter result should be interpreted 
with caution because it resulted from a small sample size.

Carcass feeding with/without bedding
Fix success was 92.3 ± 10.7% at ungulate consumption sites. We did 
not have carcass consumption samples for shrub and mixed forest, 

Table 5
Estimated coefficients (βi), robust SEs, and 95% CIs for the top multinomial model based on behavior and habitat at cluster, as 
assessed by Δi and wi

Variable

Vegetation feeding Vegetation feeding with bedding Ungulate carcass w/without bedding

βi Robust SE

95% CI

βi Robust SE

95% CI

βi Robust SE

95% CI

Lower Upper Lower Upper Lower Upper

Cluster
 Pointscl −0.613 0.133 −0.873 −0.353 0.103 0.046 0.012 0.194 0.153 0.049 0.057 0.250
 24hcl −0.634 0.776 −2.154 0.887 0.555 0.563 −0.548 1.658 −0.586 0.484 −1.535 0.363
 Fidelitycl 0.001 0.009 −0.016 0.019 −0.002 0.003 −0.008 0.004 −0.006 0.003 −0.013 −0.000
 Avg_distcl 0.156 0.039 0.080 0.232 −0.013 0.027 −0.067 0.040 −0.053 0.028 −0.108 0.003
Hab_class
 Shrub 0.538 1.015 −1.450 2.527 −0.440 0.591 −1.598 0.717 −0.462 1.189 −2.793 1.868
 Conifer forest −3.168 0.875 −4.883 −1.452 −1.744 0.469 −2.664 −0.824 −0.458 0.639 −1.710 0.794
 Mixed forest −1.402 0.960 −3.282 0.479 −0.269 0.653 −1.548 1.011 −0.051 0.846 −1.709 1.607
Hab_abiot
 Slope −0.018 0.033 −0.082 0.047 0.023 0.019 −0.016 0.061 −0.029 0.025 −0.078 0.019
 Slope2 0.000 0.000 −0.001 0.001 −0.000 0.000 −0.001 0.003 −0.000 0.000 −0.001 0.001
 SSI −0.313 0.319 −0.939 0.312 0.060 0.221 −0.374 0.494 0.281 0.397 −0.497 1.059
Season
 Summer −1.076 0.529 −2.113 −0.038 0.346 0.384 −0.406 1.098 −0.535 0.365 −1.250 0.181
 Autumn −2.761 0.676 −4.086 −1.436 0.256 0.384 −0.497 1.010 −1.201 0.400 −1.985 −0.416
Time_day
 Crepuscular 0.037 0.674 −1.284 1.359 0.715 0.380 −0.029 1.459 −1.434 0.541 −2.494 −0.375
 Nocturnal −0.927 0.483 −1.873 0.019 0.110 0.348 −0.572 0.791 −1.050 0.364 −1.762 −0.337
Land_class
 Foothills 0.721 0.887 −1.017 2.459 −0.309 0.484 −1.257 0.638 −0.295 0.561 −1.395 0.805
 Mountains 2.170 0.845 0.513 3.827 0.560 0.434 −0.291 1.410 −0.389 0.587 −1.540 0.762

Estimates for which the CI did not overlap 0 are given in bold. Bedding behavior was withheld as a reference category in the dependent variable. For the independent 
variables, barren/herbaceous class (Hab_class), spring (Season), diurnal (Time_day), and reclaimed mine (Land_class) were withheld as reference categories.
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but for conifer forest, fix success was lower for ungulate consump-
tion behavior compared with vegetation feeding (Table 6).

Grizzly bear behavior in a multiple-use landscape

Although the 4 behavioral states we considered occurred on all 
land designations (foothills, mountains, and reclaimed mines), these 
behaviors occurred at different frequencies among land designa-
tions (Figure 3). Although we report data only from the best predic-
tive model for each specific behavior, we observed the same patterns 
of  frequency differences for the other 2 top models. Only data from 
the best predictive model for a specific behavior are reported, but 
the observed patterns of  frequency differences maintained for the 
other 2 top models.

Vegetation feeding
Based on behavioral state predictions, vegetation feeding dif-
fered between land designations (χ2 = 156.9, df = 2, P < 0.0001), 

occurring more in the mountains than in the foothills or reclaimed 
mines, although these results need to be interpreted with caution 
because of  the low accuracy of  prediction for vegetation feeding.

Bedding
Frequency of  bedding differed between land designations 
(χ2 = 474.9, df = 2, P < 0.0001), with most bedding alone predicted 
for the foothills.

Vegetation feeding with bedding
Occurrence of  vegetation feeding with bedding also differed between 
land designations (χ2 = 245.6, df = 2, P < 0.0001), being more frequent 
in the mountains and on reclaimed mines compared with foothills.

Carcass feeding with/without bedding
Ungulate consumption differed by land designation (χ2  =  79.0, 
df = 2, P < 0.0001), with most frequent consumption occurring in 
the foothills.
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Figure 2
Detectability of  grizzly bear behavioral states from location clusters in west-central Alberta, based on manipulating GPS radiocollar fix rates. Error bars are 
standard deviations calculated based on top models for each set of  candidate models (behavior, habitat, and behavior and habitat). Veg, vegetation feeding; 
Bed, bedding; Carcass, ungulate carcass consumption.

Table 6
Estimated coefficients (βi), robust SEs, and 95% CIs for generalized linear models illustrating GPS radiocollar fix success as a 
function of  grizzly bear behavioral state

Variable

Bedding Vegetation feeding with bedding Ungulate carcass w/without bedding

βi Robust SE

95% CI

βi Robust SE

95% CI

βi Robust SE

95% CI

Lower Upper Lower Upper Lower Upper

Habitat
 Model 1:  
 Barren/ 
 herbaceous

−1.940a 0.815 −1.597 1.597 −17.043 0.966 −18.937 −15.149 −1.940a 1.262 −2.474 2.474

 Model 2:  
 Shrub

−17.752 0.642 −19.010 −16.494 −16.483 0.896 −18.239 −14.727

 Model 3:  
 Conifer forest

−14.699 0.648 −15.969 −13.430 −15.511 0.736 −16.954 −14.068 −14.225 1.064 −16.311 −12.140

 Model 4:  
 Mixed forest

−16.883 1.198 −19.231 −14.536 −16.296 1.140 −18.530 −14.061

Separate models were run for each of  4 broad habitat categories, using data collected during field visitation as input. Results of  all 4 models are presented in the 
same table. Estimates for which the CIs did not overlap 0 are given in bold. Vegetation feeding was withheld as a reference category in the dependent variable.
aCoefficient reported at 109 times its original value.
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dIscussIon
GPS technologies allow unprecedented resolution in monitoring 
animal use of  the landscape, but understanding the link between 

GPS locations and animal behavior requires a concerted effort 
of  researchers interested in extracting biological information 
from technological tools. Many advances in the interpretation of  
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Figure 3
Proportion of  grizzly bear behaviors by land designation, based on predictions from multinomial logit models with behavioral state as categorical dependent 
variable. Proportions are presented by season, including spring (A), summer (B), and autumn (C). Error bars are standard deviations calculated based on 
top models for each set of  candidate models (behavior, habitat, and behavior and habitat). Veg, vegetation feeding; Bed, bedding; Carcass, ungulate carcass 
consumption.
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behavior from GPS radiocollar data have come from studies on 
carnivores, but these have typically focused on distinguishing car-
nivore predatory events from no-kill locations. However, because 
human activity and associated mortality risk are substantial limiting 
factors for carnivore populations (Creel and Creel 1998; Andren 
et  al. 2006; Goodrich et  al. 2008), behavioral studies and conser-
vation decisions would benefit from obtaining additional informa-
tion from GPS radiocollar data, such as understanding carnivore 
behavior in relation to human land use. This information could, for 
example, assist in minimizing human-carnivore encounters or help 
mitigate the effects of  land use change on carnivore populations.

Using the behavior-conservation unified framework called for in 
the recent literature (Blumstein and Fernandez-Juricic 2004; Caro 
2007), we found that habitat variables were not important at pre-
dicting ungulate consumption by grizzly bears in a complex land-
scape, with cluster characteristics alone providing good carcass site 
prediction. Once a kill had been made or a carcass located that 
had been killed by another predator, bears spent more time at the 
carcass compared with sites with other behaviors. Because ungulate 
consumption can be readily identified from cluster patterns without 
the need for habitat information, model parameters estimated from 
the top behavior at cluster model can be used to direct field visita-
tion for studies of  grizzly bear ungulate prey composition. Based 
on the low variability in predictive accuracy (SD 1%), the 48% 
accuracy of  ungulate consumption predictions can also be used to 
correct kill rate estimates (by multiplication of  predicted carcass 
consumption by 2). The resulting estimate will have lowest error 
for times of  the year when bears are predominantly predatory, such 
as ungulate calving season. The higher incidence of  kill clusters in 
the foothills compared with mountainous areas or reclaimed mines 
is corroborated by dietary analysis that identified higher ungulate 
consumption by bears in the foothills (Cristescu B, Stenhouse GB, 
Boyce MS, unpublished data). This is likely due to higher moose 
and elk (Cervus elaphus) availability in the foothills (Cristescu B, 
Stenhouse GB, Boyce MS, unpublished data) and lower ungulate 
predation risk in open areas (Hebblewhite et  al. 2005) such as 
sparsely vegetated mountains and reclaimed mines.

Predicting bear bedding alone was best achieved by incorporat-
ing habitat variables only, which strengthens previous findings that 
microsite level habitat variables influence resting-site selection in 
brown bears (Ordiz et al. 2011). Ability to identify bedding sites is 
particularly important for carnivores inhabiting areas with exten-
sive human activity, where preservation of  fine scale habitat fea-
tures favoring bedding is required for target species conservation 
(Te Wong et al. 2004; Purcell et al. 2009). Alternatively, GPS loca-
tions associated with bedding as predicted from the multinomial 
behavioral state model could be extracted from the data set, facili-
tating analyses exclusively for foraging habitat selection. Such an 
approach should be treated with caution because of  the likely con-
nection between foraging and bedding behaviors.

Predicting vegetation feeding with bedding required a com-
plex combination of  variables that included behavior and habitat 
characteristics. Ability to predict where such complex sites occur 
is important because their conservation can have the double ben-
efit of  protecting bedding and foraging habitat. Interestingly, bears 
foraged and bedded at the same site less in the foothills than in 
the mountains or on reclaimed mines, possibly reflecting differ-
ences in food habits between land designations. Because bears in 
the foothills have more meat in their diet, plant foods may not 
influence their activity patterns as much as ungulate distribution. 
Alternatively, in the foothills, bears may be displaced by greater 

human activity, therefore not spending much time at a site unless 
they obtain a substantial energetic benefit, such as by consuming an 
ungulate carcass.

We were unable to predict vegetation feeding when it did not 
occur in conjunction with bedding. Our definition of  location clus-
ters required bears to spend ≥3 h in an area with a radius of  up 
to 50 m for the seed cluster (sensu Knopff et  al. 2009). Based on 
opportunistic direct observations of  bears digging for roots and 
grazing on herbaceous plants (n = 10), vegetation feeding does not 
occur within the above spatial and temporal cluster constraints. 
The GPS radiocollar fix rate would need to be set at lower inter-
vals than hourly as defined in this study, but one caveat of  a more 
frequent fix rate is that animal movements occurring at such fine 
temporal scales could be confounded by GPS error, resulting in 
inference problems at least for elk (Jerde and Visscher 2005). Rapid 
movement rates of  carnivores are better suited for more frequent 
fix rate schedules (McKenzie et al. 2012), and such schedules should 
be tailored to the research organism under study, preferably after a 
pilot study with radiocollars set at high fix rate. Our simulations 
involving varying fix rates showed rates of  ≥4 h result in <50% of  
clusters being detected for all behavioral states, with the exception 
of  kill clusters that are more robust to fix rate decrease (Figure 2). 
Even at a fix rate of  2 h, only up to 75% of  clusters were detected, 
with vegetation feeding and bedding clusters being most affected by 
fix rate decrease. We recommend a fix rate of  1 h or more frequent 
for inferring behavioral states of  grizzly bears. If  the focus of  a 
study is researching grizzly bear predation on large ungulates, then 
a 4-h fix rate appears sufficient to preserve a substantial portion of  
the clusters (80%). Researchers should acknowledge that using such 
an infrequent fix rate may underrepresent the importance of  young 
and/or small ungulates/other mammals, as well as scavenging by 
grizzly bears.

Animal behavior predictions based on GPS radiocollar data can 
be affected if  behavior influences fix success (Frair et al. 2010). The 
finding that fix success was highest for vegetation feeding across 
most habitat categories suggests that behaviorally induced bias in 
fix success could affect predictions of  animal behavior. Because we 
assigned behavioral states and performed habitat categorization 
based on field visitation, our inferences eliminate spurious effects 
present in previous studies that attempt to disentangle effects of  
animal behavior and land cover on fix success based on behavioral 
assumptions and low accuracy GIS habitat data (e.g., 60–90% accu-
racy for Landsat land cover data; Wickham et  al. 2004; Mayaux 
et al. 2006).

Despite their ability to incorporate a dependent variable with >2 
categories, multinomial models have rarely been applied to data 
collected during direct field observations of  behavior (Borkowski 
et al. 2006; Witter et al. 2012), to infer behavior from animal sign 
data, or for terrestrial carnivores. We demonstrated that such mod-
els can be useful to infer behavioral states based on GPS radio-
collar technology and behavioral sign, for example, prey carcasses, 
hair, bones, excavated ground, sheared plant stems, or bedding 
depressions. This approach enables predictions of  behavioral states 
for the entire duration of  animal GPS radiocollar monitoring, pro-
vided fix rate, fix success, and field protocols for sampling behav-
ior are adequate. Movements determining home range use differ 
between mammal species based on body size and diet (Swihart 
et al. 1988), with home range being dependent on species-specific 
body size, group living, or solitary habits (Gittleman and Harvey 
1982). This variation in movements will likely affect the poten-
tial of  the cluster parameters outputted by our models to predict 
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behavioral states beyond our study species. However, our approach 
can be readily used to parameterize models for other study sys-
tems using situation-specific covariates. In addition, the straightfor-
ward ability to modify the original Python algorithm (Knopff et al. 
2009) maximizes the flexibility of  the framework outlined herein 
for predicting behavioral states from GPS data. Field protocols for 
cluster visitation should strive to reach a balance between visiting 
clusters soon after the animal was there, thereby minimizing site 
disturbance by nonmonitored animals, and care not to interfere 
with animal behavior. In addition, if  the study species is potentially 
dangerous, visiting the site too early can put field personnel at risk, 
such as surprising large carnivores feeding or resting at ungulate 
carcasses.

Although the number of  field visited GPS location clusters was 
large, sample size of  individual bears monitored was relatively low 
(n  =  10) due to low bear densities in the study area (Boulanger 
et al. 2005) and logistical constraints. This limitation is likely not 
a major issue with regard to technique development, which is the 
focus of  the article. It might, however, influence the generality of  
findings related to grizzly bear behavioral patterns in the multiple-
use landscape of  our study area; therefore, the respective results 
should be interpreted with caution. We were unable to radiocol-
lar all grizzly bears and other large carnivores present in the area 
including black bears (Ursus americanus), wolves (Canis lupus), and 
cougars (P.  concolor). Some ungulate consumption events might 
have been missed if  a nonradiocollared carnivore moved the car-
cass before field crews visited the cluster site. We minimized this 
problem by performing thorough site investigations looking for 
evidence of  hair, drag marks, carnivore scat, and its relative age. 
An additional potentially confounding issue was that larger bod-
ied grizzly bears have higher per minute meat intake than smaller 
bears (Wilmers and Stahler 2002), and we expected that charac-
teristics of  individual bears may influence behavioral inferences 
based on GPS cluster duration. However, models using a random 
intercept for unique bear identity did not outperform multinomial 
models, suggesting that our modeling approach was adequate. 
When compared with body size differences between individuals 
in coastal bear populations, body sizes of  animals monitored in 
our study were relatively similar, which might reflect in relatively 
similar intake rates. Further, variation in bedding behavior and 
bed site selection is negligible for brown bears (Ordiz et al. 2011), 
which would also contribute to the good performance of  fixed-
effects modeling applied to our data set.

Whether facultative or obligate, carnivores display complex 
behavioral states, and their structural role in ecosystems (Sergio 
et  al. 2008) justifies augmented research efforts into carnivore 
behavioral ecology. Knowledge of  where carnivores perform cer-
tain behaviors would enable a level of  detail far beyond the tradi-
tional approach of  understanding habitat selection based on GPS 
locations with unknown behavior. For example, areas where bears 
consume ungulates are important because they facilitate body mass 
gain and associated increase in reproductive success (Hilderbrand 
et  al. 1999). In the case of  grizzly bears on mined landscapes, 
which change habitats from forested to artificial open areas, ungu-
lates are consumed in tree patches left undisturbed during mining 
(Cristescu et al. 2014). By discriminating multiple behavioral states 
from telemetry data, our modeling framework enables identifica-
tion of  areas in need of  protection and is transferable to other spe-
cies and populations that may experience loss of  behaviors (sensu 
Caro and Sherman 2012) as a result of  human-caused environ-
mental change.
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