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ABSTRACT Using clusters of locations obtained from Global Positioning System (GPS) telemetry collars to identify predation events may

allow more efficient estimation of behavioral predation parameters for the study and management of large carnivore predator–prey systems.

Applications of field- and model-based GPS telemetry cluster techniques, however, have met with mixed success. To further evaluate and refine

these techniques for cougars (Puma concolor), we used data from visits to 1,735 GPS telemetry clusters, 637 of which were locations where

cougars killed prey .8 kg in a multi-prey system in west-central Alberta. We tested 1) whether clusters were reliably created at kill locations, 2)

the ability of logistic regression models to identify kill occurrence (prey .8 kg) and multinomial regression models to identify the prey species at

a kill cluster, and 3) the duration of monitoring required to accurately estimate kill rate and prey composition. We found that GPS collars

programmed to attempt location fixes every 3 hours consistently identified locations where prey .8 kg were handled, and cluster creation was

robust to GPS location acquisition failures (poor collar fix success). The logistic regression model was capable of estimating cougar kill rate with

a mean 5-fold cross validation error of ,10%, provided the appropriate probability cutoff distinguishing kill clusters from non-kill clusters was

selected. Logistic models also can be used to direct visits to clusters, reducing field efforts by as much as 25%, while still locating .95% of all

kills. The multinomial model overpredicted occurrence of primary prey (deer) in the diet and underpredicted consumption of alternate prey

(e.g., elk and moose) by as much as 100%. We conclude that a purely model-based approach should be used cautiously and that field visitation

is required to obtain reliable information on species, sex, age, or condition of prey. Ultimately, we recommend a combined approach that

involves using models to direct field visitation when estimating behavioral predation parameters. Regardless of the monitoring approach, long

continuous monitoring periods (i.e., .100 days of a 180-day period) were necessary to reduce bias and imprecision in kill rate and prey

composition estimates. ( JOURNAL OF WILDLIFE MANAGEMENT 73(4):586–597; 2009)
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Predation is simultaneously one of the most important, most
controversial, and least understood aspects of large carnivore
ecology and management. Even after decades of study, the
form of many of the underlying mechanisms driving
predation rates continues to be a subject of debate (Abrams
and Ginsburg 2000, Skalski and Gilliam 2001, Vucetich et
al. 2002, Eberhardt et al. 2003), and data often are
insufficient to test fundamental hypotheses regarding the
effects large carnivores have on their prey (Boutin 1992).
One prerequisite for resolving controversy, testing hypoth-
eses, and developing useful models for management is to
accurately estimate parameter values for behavioral compo-
nents of predation. Estimates of the rate at which prey are
killed (Sand et al. 2008), the selection of prey species in
multi-prey systems (Robinson et al. 2002, Knopff and Boyce
2007), the age–sex structure of prey (Mills and Shenk 1992),
the physical condition of prey (Husseman et al. 2003), and
the spatial distribution of predation risk (Hebblewhite et al.
2005, Kauffman et al. 2007, Creel 2008) are fundamental to
understanding the effects large carnivores have on prey
populations and ecosystem structure. Estimating these
parameters accurately is an important challenge for ecolo-
gists and wildlife managers.

To date, snow-tracking and radiotracking have been the
primary techniques used to intensively monitor large

carnivores for estimating behavioral parameters of predation.
Snow-tracking can provide a detailed record of predation
events but is labor intensive and can be employed only when
snow conditions permit. Radiotracking is not limited by
snow cover but also requires intense efforts in the field (e.g.,
Beier et al. 1995). Even when snow is available and intensive
monitoring possible, sample sizes (no. of individuals or
groups monitored) tend to be small and continuous
monitoring intervals short. Small sample sizes can under-
mine inferences about the basic mechanisms of predation
(Marshal and Boutin 1999), and short monitoring periods
can lead to prohibitively wide confidence intervals around
parameter estimates (Hebblewhite et al. 2004). Despite the
importance of estimating behavioral parameters of predation
for understanding predator–prey dynamics, therefore, the
onerous nature of available methods has meant that quality
estimates (based on appropriate sample size and sampling
intensity) are rarely obtained for large carnivores.

Global Positioning System (GPS) radiotelemetry has
created new possibilities to efficiently survey large carnivore
predation, permitting increased sample size and monitoring
duration. Because prey takes time to consume (i.e., handling
time), large carnivores wearing GPS radiocollars set to an
appropriate location-fix interval should produce multiple
location fixes in places where prey are handled. Anderson
and Lindzey (2003) pioneered a technique for identifying
and visiting these clusters of GPS telemetry locations to1 E-mail: kknopff@ualberta.ca
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locate prey killed by cougars (Puma concolor) and used it to
estimate kill rate and prey composition in the Snowy Range,
Wyoming, USA. Similar field-based techniques have since
been developed for wolves (Canis lupus) in both Scandinavia
(Sand et al. 2005) and North America (Webb et al. 2008).
Models parameterized using initial results from field data
collected during visits to clusters also have been proposed as
a means to estimate parameters of predation indirectly using
GPS telemetry data alone (i.e., no additional field
visitation), further improving efficiency and reducing total
costs of research (Anderson and Lindzey 2003, Webb et al.
2008). Models designed to estimate kill rate have been
developed (Anderson and Lindzey 2003, Franke et al. 2006,
Zimmermann et al. 2007, Webb et al. 2008) and models
designed to estimate prey composition at the species level in
multi-prey systems have been suggested (Anderson and
Lindzey 2003, Webb et al. 2008) but not attempted.

Field-based techniques are generally considered useful, but
correction factors might need to be employed to adjust for
bias introduced when kills are not identified by GPS
location clusters (Sand et al. 2005). Detection failure has not
been assessed for cougars, but can be extensive for wolves,
particularly for prey smaller than deer, and can occur even
when the time interval between GPS location fixes is short
(Webb et al. 2008). Moreover, using models to estimate kill
rate has been variously considered by researchers to be useful
(Anderson and Lindzey 2003, Franke et al. 2006), some-
what useful (Webb et al. 2008), and not useful (Zimmer-
mann et al. 2007). Consequently, additional evaluation and
refinement of GPS telemetry techniques for estimating large
carnivore predation parameters is required to more fully
assess their utility and improve upon it where possible.

We employed a large data set of field visits to cougar GPS
telemetry clusters to evaluate, refine, and expand upon both
field- and model-based techniques for estimating parameters
of predation. Our primary objectives were 3-fold. The first
was to assess the importance for cougars of several potential
sources of bias that have been explicitly or implicitly
identified in recent studies of wolf kill rate. These sources
of bias include the potential lack of cluster creation at kill
sites (Sand et al. 2005), the effect of the number of location
fixes obtained by GPS collars on parameter estimation
(Sand et al. 2005, Webb et al. 2008), the size of prey that
can be reliably detected using GPS location clusters (Webb
et al. 2008), and the selection of an appropriate probability
cutoff level for logistic regression models used to identify
kills from GPS data (Zimmermann et al. 2007, Webb et al.
2008). Second, we endeavored to expand on available
model-based techniques by developing and assessing models
capable of predicting not only kill locations (kill rate) but
also species killed at that location (prey composition)
without field visitation. Third, because sampling duration
can have an important influence on the confidence placed in
predation parameter estimates (Hebblewhite et al. 2004), we
focused on identifying the sampling duration required to
accurately estimate seasonal kill rate and prey composition
for individual cougars in a multi-prey system.

STUDY AREA

We studied cougar predatory behavior in a 16,900-km2

study area located along the central eastern slopes of
Alberta’s Rocky Mountains (centered approx. at 528180N,
1158480W). The study area was bordered by Banff and
Jasper national parks to the west and extended east to the
towns of Rocky Mountain House, Alberta, Canada, and
Caroline, Alberta, Canada. Rugged mountains in the west
gave way to rolling foothills and eventually to flat
agricultural land in the east. The region’s climate was
characterized by warm, dry summers and cold, snowy
winters. Chinook winds provided sporadic warming during
winter, often resulting in complete removal of the snowpack
from south-facing slopes. The study area was mostly public
land with an increasing proportion of private lands in the
east. It was primarily forested (63%), but rock, ice, and bare
ground (14%—primarily in the mountains), and cut-blocks
of various ages (8%) also were important land-cover classes.
Conifer forests dominated the region and were composed
primarily of lodgepole pine (Pinus contorta) and white spruce
(Picea glauca). Black spruce (Picea mariana) and tamarack
(Larix laricina) were common in low-lying areas, and aspen
(Populus tremuloides) and balsam poplar (Populus balsamifera)
were patchily distributed throughout the region. Typical
understory species were green alder (Alunus crispa), willow
(Salix spp.), and rose (Rosa acicularis). Human recreational
activity was common, especially during summer, and
Alberta’s oil, gas, and forestry industries were active on
the landscape. Cougars in the area were managed as a big-
game animal and were hunted according to a strict quota
system during winter (Ross et al. 1996).

Numerous species of ungulates were potential prey for
cougars, including large numbers of elk (Cervus elaphus),
moose (Alces alces), white-tailed deer (Odocoileus virgin-
ianus), mule deer (Odocoileus hemionus), and feral horses
(Equus caballus). Smaller numbers of bighorn sheep (Ovis
canadensis), woodland caribou (Rangifer tarandus), and
mountain goats (Oreamnos americanus) were patchily
distributed in the western portion of the study area. Large
domestic ungulates (e.g., cattle and llama) were available
also, primarily on private lands in the eastern portion of the
study area. Non-ungulate prey were abundant and included
ruffed grouse (Bonasa umbellus), spruce grouse (Falcipennis
canadensis), snowshoe hare (Lepus americanus), beaver
(Castor canadensis), porcupine (Erethizon dorsatum), coyote
(Canis latrans), and red fox (Vulpes vulpes).

METHODS

We used data from 24 cougars (15 ad F, 5 ad M, 3 sub-ad F,
and 1 sub-ad M) captured during winters 2005–2006 and
2006–2007. We accomplished capture by using trained
hounds to track and tree cougars and then administering 3
mg/kg Telazol and 2 mg/kg xylazine via remote injection
(University of Alberta Animal Care Protocol no. 479505).
At capture we weighed, measured, sexed, and assigned to
cougars one of 3 age classes (kitten, sub-ad, or ad). We
estimated age using a combination of pelage spotting
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progression (Shaw 1986), tooth color and wear character-
istics (Ashman et al. 1983, Shaw 1986), and gum-line
recession (Laundré et al. 2000). We obtained photographs
of dentition at each capture and made post-hoc comparisons
to ensure consistency among estimated ages. Exact ageing
(e.g., by month) was not possible, and we considered cougars
kittens if they still traveled with their mothers, subadults
from dispersal until approximately 2.5 years, and adults if
.2.5–3 years. We fitted all cougars with Lotek 4400S GPS
collars (Lotek Engineering, Newmarket, ON, Canada),
programmed to obtain a GPS location every 3 hours, from
which we could download data remotely on demand. We
monitored cougars closely between 1 December 2005 and 18
August 2007 using a combination of ground and aerial
telemetry for as long as each collar remained active. During
the monitoring period individual cougars wore active GPS
collars for 25�495 consecutive days (x̄ ¼ 191, SD ¼ 138),
resulting in 130�2,617 location points per individual (x̄ ¼
895, SD ¼ 659). We downloaded location data remotely
from active GPS collars every 2–3 weeks, usually from the
ground but occasionally during aerial telemetry flights.

We used PythonTM programming language (Python
Software Foundation, Hampton, NH) to develop a rule-
based algorithm capable of identifying GPS location clusters
from collar data (program available from the authors).
Following Anderson and Lindzey (2003), we defined a
cluster spatially as �2 points located within 200 m of each
other. The algorithm initially searched within the 200-m
limit and also used a temporal screen of 6 days when
identifying associated points. Two initial points fitting these
space–time restrictions formed a seed cluster and the
geometric center of the cluster was calculated. The program
then added additional points occurring within 200 m of the
geometric center and within the temporal window of 6 days
to the cluster, one at a time. It adjusted the geometric center
with each additional point and repeated the process until no
more points could be added. We allowed clusters to persist
beyond the initial 6-day temporal screen provided that the
difference between the last point and the next new point at a
cluster was always �6 days. After completing these
calculations, the program output a number of descriptive
variables for each identified cluster. These variables included
the geometric center of the cluster, the largest distance from
the geometric center to a point (cluster radius), the number
of location fixes occurring within 200 m of the geometric
center, the number of fixes obtained while the cluster
persisted, and number of 24-hour periods where �1 fix was
obtained at the cluster.

We programmed geometric centers into handheld GPS
units and used these to locate clusters in the field. Ground
crews of �2 people conducted systematic searches at each
cluster location. We searched clusters with a radius of �50
m by walking 8 transect lines along cardinal compass
bearings (e.g., N, NE, E) out to 50 m, walking 20 m to the
right, and then zig-zagging back to the cluster center. For
clusters with a radius of .50 m we employed the same 8-
line technique out to 50 m and then made concentric circles

varying between 5 m and 10 m apart (depending on
visibility) out to the full extent of the cluster radius (up to
200 m). We assigned a kill to a GPS location cluster if we
found prey remains that closely matched the dates over
which the cluster was created and we also found evidence of
cougar feeding behavior (e.g., carcass had been buried, hair
mat at cache site, multiple cougar scats). We assigned cougar
scavenging to clusters where the carcass clearly had been
killed by something other than a cougar (e.g., remains from
a wolf-killed, hunter-killed, or road-killed animal) or if the
carcass age differed greatly from the dates the cougar spent
at the cluster. Using this classification scheme, instances of
scavenging on fresh carcasses that were not obviously killed
by something other than a cougar could be misclassified as a
kill. We closely examined all found remains (scavenging or
kills) to determine species, age, sex, and condition (marrow
fat).

In their pioneering work, Anderson and Lindzey (2003)
failed to address the potential that clusters might not form
at some cougar kill locations. To evaluate the ability of GPS
collars with a 3-hour fix interval to identify locations where
cougar-killed prey by creating clusters, we snow-tracked
collared cougars prior to downloading GPS data and
subsequently compared kills found during snow-tracking
sessions to GPS data to determine whether clusters were
consistently created at kill sites.

Model Development
We used logistic regression (Hosmer and Lemeshow 2000)
to model presence or absence of a kill at a GPS cluster. We
were primarily interested in producing a model capable of
predicting ungulate kill rate without resorting to field
visitation, but because we wanted a general model for all
cougars in all seasons and did not want to miss ungulate
neonates in spring, we coded all kills of prey weighing .8
kg as kills (1) and all clusters where we found either nothing
or prey ,8 kg as non-kills (0). Unlike other attempts to
develop logistic regression kill-rate estimators for large
carnivores using GPS location data (i.e., Anderson and
Lindzey 2003, Zimmermann et al. 2007, Webb et al. 2008),
therefore, we incorporated moderate-sized non-ungulate
prey (e.g., beaver, porcupine, coyote) into model develop-
ment. We did not use data from clusters truncated by initial
collaring or collar removal or failure in model development.
In addition, we removed clusters created at nursery sites
where females had kittens. Nursery clusters can be easily
screened from a data set, even without on-the-ground
visitation, because of the distinctive pattern of prolonged use
(often .1 month) and creation of subsidiary clusters of
shorter duration (often kills) with repeated movement
between these clusters and the nursery site (Beier et al.
1995, Benson et al. 2008).

We developed a candidate set of predictive models based
solely on cougar movement behavior at clusters. Although
there is evidence that habitats at large carnivore kill sites
differ from habitats at locations associated with other
behavioral states (Kauffman et al. 2007), we wanted the
model to be as broadly applicable as possible and so did not
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include site-specific habitat covariates in model develop-
ment. We used 5 potential explanatory variables output by
our clustering program: 1) duration of cluster (hr); 2)
number of points at the cluster (corrected to account for
variation in fix success by dividing by the proportion of
successful fixes obtained while the cluster persisted); 3)
fidelity to the cluster site (points at cluster minus points
away over the duration of the cluster); 4) number of 24-hour
periods during which we recorded �1 location point at the
cluster; and 5) a binary variable dividing clusters into those
with points spanning more than one 24-hour period and
those with all points occurring within 24 hours. We
developed candidate models using various combinations of
the predictor variables. To avoid multi-collinearity we did
not use highly correlated predictor variables (i.e., jr j . 0.7)
in the same model. Because the small sample size correction
for Akaike’s Information Criterion (AICc) converges to the
AIC at large sample sizes, it can be applied for model
selection regardless of sample size, and we used it to identify
a top model from our candidate set (Burnham and Anderson
2002).

The probability output from the logistic regression model
at which a cluster is assigned kill or non-kill status can be set
arbitrarily, most commonly at 0.5 (e.g., Zimmermann et al.
2007), or it can be defined by using sensitivity and specificity
curves to obtain an optimal output (e.g., Webb et al. 2008).
Cutoff selection can determine whether the model performs
well or poorly at prediction (Hosmer and Lemeshow 2000)
and might affect kill rate estimation. We investigated the
effect of using 4 different cutoff levels (0.5, 0.4, 0.3, and the
optimum derived from the data) on kill rate estimation. We
evaluated model classification using receiver–operator char-
acteristic (ROC) curves. We assessed the ability of the
model to predict kill rate at the various cutoff levels using k-
fold cross-validation with 5 data partitions (Boyce et al.
2002). Other studies test the generality of kill rate models
within a study area by withholding data (usually from an
individual or a small subset of individuals), testing the ability
of the model to predict kill rate for the withheld data, and
then either refitting the model by incorporating withheld
data (Anderson and Lindzey 2003) or leaving testing data
out of final model parameterization entirely (Webb et al.
2008). The k-fold technique may be more appropriate
because prediction is evaluated based on a representative
sample of the population instead of a potentially unrepre-
sentative single animal or small subset of animals and
because the k-fold technique permits use of all available data
for initial model selection (i.e., data are withheld only when
assessing prediction, not when identifying a top model).

We also explored the possibility that prey composition
might be estimated using model-based (indirect) methods.
We assigned all prey .8 kg located at clusters to one of 5
prey types: deer (white-tailed and mule deer combined), elk,
moose, feral horses, and other (all other prey). We
developed multinomial logistic regression models (Hosmer
and Lemeshow 2000) to assign a probability that a given kill
cluster fell into one of these categories. For model develop-

ment we used only data from clusters where we found a kill
and could unambiguously assign it to one of these prey
categories. We developed a candidate set of models based
primarily on cluster variables associated with duration and
intensity of use (no. of points, fidelity, and binary day
periods), reasoning that larger prey would result in longer
handling times for cougars (Anderson and Lindzey 2003).
We also used information about individual cougars because
cougar age (sub-ad vs. ad) and especially sex (M vs. F) have
been suggested to contribute to prey selection (Ross and
Jalkotzy 1996, Murphy 1998, Anderson and Lindzey 2003).
Finally, we risked reducing broader model applicability by
incorporating site-specific habitat covariates extracted from
a Geographical Information System under the assumption
that different habitat selection patterns of ungulate prey
types might be a critical component of effective discrim-
ination between kill types. We used deer as the reference
category in model development and we selected a top model
using AICc. The multinomial model output a set of
probabilities, one for each possible category of kill (Hosmer
and Lemeshow 2000). The category with the highest
probability was the predicted category. Just as with the
logistic models, we used 5-fold cross-validation to assess the
predictive capacity of the top multinomial prey composition
model.

Assessing the Influence of Fix Success and Improving
Efficiency in the Field
Low and variable GPS location acquisition rates are
common problems encountered in GPS radiocollar studies
of cougars (Anderson and Lindzey 2003, Land et al. 2008).
Lower than average GPS acquisition might reduce the
probability of cluster creation at some kills, biasing estimates
of kill rate and prey composition. Webb et al. (2008)
examined the effect of reducing the time between GPS
location attempts (fix interval) on the probability of locating
wolf-killed prey and found that kill rate for small prey was
underestimated at longer fix intervals. Variation in fix
acquisition, however, presents a different problem. Reduc-
tions in fix success are more likely to approximate a random
loss of data, as opposed to the strictly systematic data
reduction as the fix interval is lengthened. This type of fix
loss can contain runs of missed points, a pattern that may be
even more likely to result in detection failure. To assess the
extent to which reduced fix success biases cougar kill rate
and prey composition, we used data from 4 collars that
obtained above average fix success (.60%; see results) and
were deployed on cougars for �11 months. We randomly
removed fixes to simulate reduced GPS acquisition at 3
levels (45%, 30%, and 15%). We then reran the clustering
algorithm at each reduced level to determine how many
clusters were lost and the number of kill clusters lost. We
also used the logistic regression model at the optimal cutoff
level to identify changes in the number of kills predicted by
the model as fix success declined. Finally, we examined the
composition of prey lost at each level of GPS acquisition
reduction.

In cases where detailed information is required about large

Knopff et al. � Estimating Cougar Predation Parameters 589



carnivore predation events, there may be no substitute for
field visitation. Hence, we assessed the potential for
statistical models to help guide cluster visitation and
improve the efficiency of field-based parameter estimation
for cougars. We used the top logistic regression model to
output the probability that each cluster we visited repre-
sented a kill. We then simulated various cutoff probabilities
below which we would not have visited a cluster in the field.
We assessed amount of effort saved and proportion and type
of kills missed at each probability cutoff. Because availability
of smaller prey (e.g., ungulate neonates, beaver) was reduced
in winter and we expected that handling times might be
longer in winter due to slower meat spoilage, we also
examined the effect of season on cutoff selection for cluster
visits.

Next, we explored the effect that sampling duration had
on estimates of kill rate and prey composition. Our goal was
to identify the minimum duration of intensive monitoring
required to provide estimates of cougar kill rate and prey
composition close to the true values obtained from long-
term monitoring of individuals. Because inferences about
kill rate and prey composition often pertain to either
summer or winter in seasonal environments, we investigated
the sampling intensity required to provide estimates for one
season (180-day period). We used resampling procedures to
simulate various sampling intensities from the first 180 days
for each of 10 cougars that we continuously monitored for
�180 days. We randomly generated 10 samples for each
cougar at each of 10 sampling intensities, increasing at
intervals of 10% up to 180 days (e.g., 18 days, 36 days, 54
days, . . . , 180 days). Thus, we generated 1,000 simulated
monitoring periods. We obtained percentage of error in kill
rate (KRkj) for simulations at the kth sampling intensity for
the jth cougar using the following:

KRkj ¼

Xn

i¼1
jx̂i � Xj j

 !
=n

Xj
ð1Þ

where x̂i¼kill rate of the ith simulated monitoring period at
the kth sampling intensity for the jth cougar, Xj ¼ kill rate
for the jth cougar obtained over the full 180-day intensive
monitoring period, and n¼number of simulated monitoring
intervals generated at the kth sampling intensity. We
calculated mean error in prey composition (PCkj) using
the following equation:

PCkj ¼

Xn

i¼1

Xm

l¼1
jŷl � Ylj j

2

0
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1
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n
ð2Þ

where ŷl ¼ estimated percentage of the lth prey type in the
ith simulated monitoring period at the kth sampling
intensity for the j th cougar, Ylj¼ percentage of the l th prey
item in the diet of the j th cougar obtained over the full 180-
day intensive monitoring period, m¼ number of prey items

in the jth cougar’s diet, and n ¼ number of simulated
monitoring intervals generated at the kth sampling intensity.
We then calculated the mean error and confidence limits for
kill rate and prey composition at each sampling intensity
using KRkj and PCkj of all 10 cougars. We tested the
hypothesis that the relationship between sampling intensity
and mean error would be nonlinear (i.e., error would decline
rapidly over initial increases in sampling intensity and then
deliver diminishing returns at higher sampling intensities)
by using 1-tailed t-tests to compare residuals of the best-fit
linear and quadratic curves.

RESULTS

We visited 1,735 GPS location clusters identified using the
rule-based clustering algorithm for 24 instrumented cougars
(mean clusters/cougar ¼ 72.3, SD ¼ 53.5). On average, we
visited clusters 21 days after they were made (SD ¼ 14.9)
and the maximum time between cluster creation and cluster
visitation was 144 days. In total, we spent 1,508 hours
searching at cluster locations. If kills were present we usually
found them quickly, in many cases before we implemented
systematic search. On average, 0.6 hours of searching were
required to locate a kill and 1.0 hours to conclude absence of
a kill at a cluster. We found cache sites (location where a
cougar buried and consumed prey), on average, within 27.1
m (SD¼ 24.7) of the geometric center of the cluster. Most
time invested in obtaining data was spent getting to the
cluster location.

We found 637 prey .8 kg, 30 prey ,8 kg, and 37
instances of scavenging at cluster sites. Clusters where prey
.8 kg were present averaged 12 locations (SD ¼ 9.6) and
spanned 71.5 hours (SD¼ 60.6). Even when we considered
only clusters associated with non-ungulate prey ,40 kg but
.8 kg (n¼90), clusters maintained an average of 8 locations
(SD ¼ 6.0) and 52.8 hours (SD ¼ 88.6). Once a cougar
killed an animal .8 kg, it displayed high fidelity to the
location where it cached the prey, with an average of 87.9%
(SD ¼ 19.7%) of GPS fixes obtained over the cluster
duration occurring within 200 m of the cache site. Five
species of wild ungulate (elk, moose, feral horse, mule deer,
and white-tailed deer) comprised most (85.9%) prey we
found at cluster locations. Beaver (4.5%) and coyote (1.5%)
were the most common non-ungulate prey represented at
clusters. At 14 (2.2%) clusters where predation occurred, we
found .1 prey item. Most often this consisted of female
ungulates and their young offspring. However, on several
occasions, an ungulate and a mesocarnivore (coyote or fox
that likely was scavenging from the ungulate carcass) were
both killed at a cluster. We rarely (n ¼ 2) recorded kills of
.1 large ungulate (e.g., .1 ad). The largest number of
cougar kills located at one cluster was 4 (1 ad F deer, 2 deer
fawns, and 1 coyote). We probably underestimated the
number of multiple kills occurring at cougar GPS clusters,
however, because we usually stopped searching at clusters
once we found a kill.

To assess the efficacy of using collars with a 3-hour fix rate
to locate prey killed by cougars, we conducted 29 snow-
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tracking sessions of collared cougars spanning .351 cougar
hours of activity. During our tracking sessions we found 5
prey items killed by cougars. Four of the kills were deer (2 of
which were fawns aged 5 months and 9 months), each of
which had a cluster of �11 location fixes associated with it.
The fifth kill we found was a snowshoe hare that did not
have an associated cluster.

Model Performance
The top model predicting presence or absence of a kill of
prey .8 kg at a cluster included covariates for the number of
points at a cluster (corrected for fix success), number of day
periods, fidelity to the cluster, and average distance of points
from geometric center (Table 1). Kills were more likely to be
present at clusters that had higher numbers of corrected
points, at clusters where the cougar was present .1 day, at
clusters for which the cougar showed high fidelity, and at
clusters where the average distance from the geometric
center of the cluster was smaller (Table 2). The optimal
probability cutoff above which we considered a cluster a kill
.8 kg was 0.22. The top model fit the data well with a
ROC area under the curve of 0.93 (i.e., outstanding
discrimination between kills and non-kills; Hosmer and
Lemeshow 2000).

Assessing model predictive capacity using k-fold cross-
validation at the 0.22 cutoff demonstrated that the model
had high classification success (86%) and provided estimates

of cougar kill rates averaging within 8.7% of the true value
(Table 3). Conducting the k-fold procedure for the same
model at 3 arbitrarily selected cutoff levels (0.3, 0.4, 0.5)
demonstrated that choice of cutoff level had a large effect on
kill-rate estimation (Table 3). Both the optimal cutoff (0.22)
and the 0.3 cutoff provided reasonable estimates of kill rate
(on average within 10% of the true value), whereas the 0.4
and 0.5 cutoffs underestimated kill rate by .16% (Table 3).
Because clusters were more often non-kill than kill sites,
errors of false positive (incorrectly identifying a non-kill
cluster as a kill) and false negative (incorrectly identifying a
kill cluster as a non-kill) canceled each other out to produce
better estimates of kill rate at lower cutoff levels, despite
slight increases in overall classification success at higher
cutoff levels (Table 3).

Of the 637 kills .8 kg that we found at GPS location
clusters, 468 (73.3%) were deer, 47 (7.4%) moose, 38
(6.0%) elk, 21 (3.3%) feral horses, and 63 (9.9%) other
prey (primarily non-ungulate). Several candidate models in
the multinomial set were statistically indistinguishable in
their ability to discriminate between these categories (Table
4). These models represent slight variations on a theme and
we selected the model with the most variables (the second-
ranked model) for prediction because this model explained
the most total variation (i.e., it had the lowest log
likelihood). The selected model included behavioral varia-
bles (no. of points at a cluster, no. of day periods spent at the
cluster, and average distance of points from geometric
center), individual cougar characteristics (cougar age and
sex), and environmental covariates (season, wet openings,
dry openings, mixed forest, clear-cuts, and terrain rugged-
ness within a radius of 500 m from the cache site) to predict
the type of kill (Table 5). The 5-fold cross-validation we
used to assess the predictive capacity of the model revealed a
mean percentage correctly classified of 74.8%. The model
overpredicted deer (Table 6), which were the most abundant
prey. Other prey were underrepresented by the model and
also were burdened with more variation in the predicted
level of dietary importance (Table 6).

Assessing the Influence of Fix Success and Improving
Efficiency in the Field
The Lotek GPS collars we employed averaged 60% fix
success, ranging from 45% to 83% for individual cougar.

Table 1. The 5 top-ranked logistic regression models for discriminating kills (.8 kg) from non-kills at 1,735 cougar Global Positioning System location
clusters along the central east slopes of Alberta’s Rocky Mountains, December 2005 to August 2007. Model log-likelihood (LL), number of estimated
parameters (K ), small sample size corrected Akaike’s Information Criterion (AICc), AICc difference (DAICc), and Akaike weight (wi) are displayed.

Rank Variables LL K AICc DAICc wi

1 COR_AT,a FIDELITY,b BIDAY1,c AVERAGE_DId �582.180 4 1,173.254 0.00 0.82
2 COR_AT, FIDELITY, BIDAY1 �584.953 3 1,176.495 3.24 0.16
3 COR_AT, FIDELITY, AVERAGE_DI �587.608 3 1,181.741 8.49 0.12
4 COR_AT, FIDELITY �589.831 2 1,183.920 10.67 0.04
5 COR_AT �635.227 1 1,272.538 99.28 0.00

a No. of location fixes divided by the proportion of successful fixes over the duration of the cluster.
b No. of fixes away from the cluster subtracted from the no. of fixes at the cluster over the duration of the cluster.
c Binary variable indicating 1-day or .1-day period spent at the cluster.
d Average distance of all points at the cluster from the geometric center of the cluster.

Table 2. Coefficients for the highest-ranking logistic regression model used
to predict presence or absence of a kill at a Global Positioning System
location cluster for cougar along the central east slopes of Alberta’s Rocky
Mountains, December 2005 to August 2007.

Variable Coeff. SE 95% CI

COR_ATa 0.188 0.202 0.149 to 0.229
FIDELITYb 0.112 0.014 0.085 to 0.140
BIDAY1c 1.071 0.219 0.643 to 1.500
AVERAGE_DId �0.007 0.003 �0.012 to �0.001
Constant �2.722 0.152 �3.020 to �2.424

a No. of location fixes divided by the proportion of successful fixes over
the duration of the cluster.

b No. of fixes away from the cluster subtracted from the no. of fixes at the
cluster over the duration of the cluster.

c Binary variable indicating 1-day or .1-day period spent at the cluster.
d Average distance of all points at the cluster from the geometric center of

the cluster.
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Simulated fix success reduction by random removal of GPS

locations revealed that the number of clusters created

dropped rapidly as we reduced fix success (Fig. 1). However,

clusters where kills were present were more resistant to fix

success reductions than were non-kill clusters (Fig. 1).

Indeed, reducing fix success to 45% resulted in only a slight

underestimate of kill rate (x̄ ¼ 3.8%). Reductions to 30%

resulted in more substantial underestimates (x̄ ¼ 11.4%),

and by the time we reduced fix success to 15% we lost a

substantial proportion of cougar kill clusters (x̄ ¼ 34.1%)

and most non-kill clusters (x̄ ¼ 85.9%). The top logistic

regression model using the optimal cutoff of 0.22 further

underestimated the number of kill clusters by approximately

15%, regardless of the level to which we reduced fix success

(Fig. 1). We first lost clusters associated with smaller prey

such as beaver and deer as we reduced fix success, whereas

we lost no large ungulates such as elk, moose, or feral horses

from the kill sample until we reduced fix success to 15%.

Applying the top logistic regression model to our entire

cluster dataset (n ¼ 1,735) revealed that visiting only those

kills with a probability above the optimal cutoff of 0.22

would have reduced our efforts in the field by 60% but also

would have eliminated 14% (n ¼ 88) of cougar-killed prey

from our sample. Over 80% of these eliminated prey were

either ungulate young of the year (most of them in summer)

or smaller non-ungulate prey such as beaver and coyote,

resulting in a strong sampling bias against smaller prey if we

used this cutoff. By using the more conservative probability

cutoff level of 0.1 to direct field visitation, on the other

hand, it would still have been possible to eliminate 23% of

the field effort while maintaining almost perfect documen-

tation of kills .8 kg (98%). When we examined the kill

probability output by the model at a kill cluster by season,

we found that more clusters with low model probabilities

were associated with kills .8 kg in summer (x̄ ¼ 0.686, 15

Apr–14 Oct) than in winter (x̄ ¼ 0.801, 15 Oct–14 Apr;

2-tailed t-test, P , 0.001). Consequently, in summer close

to 1.5 times as many clusters must be visited (model

probability cutoff¼ 0.1) to locate �95% of cougar prey .8

Table 4. The 5 top-ranked models for discriminating prey type (deer, elk, moose, feral horse, other) at 637 cougar kills along the central east slopes of
Alberta’s Rocky Mountains, December 2005 to August 2007. Model log-likelihood (LL), number of estimated parameters (K), small sample size corrected
Akaike’s Information Criterion (AICc), AICc difference (DAICc), and Akaike weight (wi) are displayed.

Rank Variables LL K AICc DAICc wi

1 C_SEX,a C_AGE,b SEASON,c COR_AT,d BIDAY1,e DNWETOP,f

DNDECMI,g TER_RUG,h DNNATOP,i DNALLCUj
�441.097 10 907.823 0.000 0.261

2 C_SEX, C_AGE, SEASON, COR_AT, BIDAY1, AVERAGE_DI,k

DNWETOP, DNDECMI, TER_RUG, DNNATOP, DNALLCU,
�439.515 11 907.953 0.129 0.244

3 C_SEX, C_AGE, SEASON, COR_AT, BIDAY1, DNWETOP,
DNDECMI, TER_RUG, DNNATOP

�442.820 9 908.135 0.312 0.223

4 C_SEX, C_AGE, SEASON, COR_AT, DNWETOP, DNDECMI,
TER_RUG, DNNATOP

�444.534 8 908.581 0.758 0.178

5 C_SEX, C_AGE, SEASON, COR_AT, BIDAY1, AVERAGE_DI,
DNWETOP, DNDECMI, DNCONIF,l TER_RUG, DISTWAT

�441.277 11 911.476 3.653 0.042

a Cougar sex.
b Cougar age.
c Season.
d No. of location fixes divided by the proportion of successful fixes over the duration of the cluster.
e Binary day period.
f Wet openings.
g Mixed forest (deciduous and conifer).
h Terrain ruggedness.
i Natural openings.
j Clear-cuts.
k Average distance of all points at the cluster from the geometric center of the cluster.
l Conifer forest.

Table 3. Mean and standard deviation of 5-fold cross-validation for percentage of correctly classified, rates of misclassification, and deviation from known
cougar kill rate for predictions at 4 probability cutoff levels derived from logistic regression models distinguishing kill locations from non-kill locations for
cougar along the central east slopes of Alberta’s Rocky Mountains, December 2005 to August 2007.

Cutoff

Correctly classified Rate of false positivea Rate of false negativeb Deviation from known kill rate

x̄ SD x̄ SD x̄ SD x̄ SD

0.22 86.08 3.1 21.51 4.63 8.76 2.41 þ8.67 5.56
0.3 87.58 1.76 14.79 1.91 11.06 2.35 �6.58 7.57
0.4 87.89 1.15 11.17 2.00 12.44 2.14 �16.11 10.21
0.5 87.60 1.6 9.37 2.90 13.58 2.12 �22.69 10.51

a Rate of false positive is the no. of clusters incorrectly considered kills by the model divided by the true no. of kill clusters.
b Rate of false negative is the no. of clusters incorrectly considered non-kills by the model divided by the true no. of non-kills.
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kg than must be visited to locate the same percentage of prey
.8 kg in winter (model probability cutoff ¼ 0.15).

We found no obvious optimal level of effort that should be
employed to estimate kill rate and prey composition for a
season (180-day period). The relationship between mean
error in kill rate and sampling intensity was linear (i.e., the
best-fit quadratic equation did not differ from the best fit
straight line; t-test, P ¼ 0.13), indicating that each
investment in time yields an approximately equal return in
improved accuracy. The relationship between mean error in
prey composition and sampling intensity, on the other hand,
was quadratic (t-test, P ¼ 0.02), but the curve was shallow
and returns on time invested in the field did not diminish
rapidly (Fig. 2). Despite the lack of a clearly defined optimal
level of effort that allowed accurate estimation of both
parameters, it is clear that short monitoring periods produce
estimates of kill rate and prey composition that are both
biased and imprecise. Indeed, 108 consecutive days of
monitoring were required before the upper bound of a 95%

confidence interval surrounding the mean error of both kill
rate and prey composition dropped below 20% (Fig. 2).

DISCUSSION

Our rule-based clustering algorithm proved effective for
identifying locations where cougars killed prey .8 kg.
Webb et al. (2008) promote the use of statistical clustering
programs (e.g., Kulldorff et al. 2005) for kill-site identi-
fication. However, to use these programs effectively,
biologically reasonable constraints (rules) must be applied
to the spatial and temporal extent of clusters they identify.
In practice, therefore, statistical programs only improve on a
rule-based algorithm if the statistical probability associated
with the cluster output will be used in subsequent models for
kill site identification. If subsequent modeling will be based
on parameters not derived from the statistical program (e.g.,

Table 5. Coefficients for the highest-ranked multinomial regression model used to predict the species of kill at a cougar kill cluster along the central east
slopes of Alberta’s Rocky Mountains, December 2005 to August 2007. All coefficients are in relation to deer, which is the reference category.

Variable

Coeff.

Moose Elk Horse Other

C_SEXa 3.019 1.999 4.516 1.884
C_AGEb 1.053 1.936 16.220 �0.191
COR_ATc 0.026 0.013 0.003 �0.054
BIDAY1d �0.466 �0.033 0.341 �0.684
AVERAGE_DIe 0.008 0.007 �0.004 0.008
SEASONf �2.98 �0.925 �1.309 �0.351
TER_RUGg �0.03 �0.010 �0.021 �0.028
DNWETOPh �0.03 �0.023 �0.041 0.003
DNDECMIi �0.002 0.002 0.003 �0.001
DNNATOPj 0.001 0.007 �0.027 0.005
DNALLCUk �0.000 0.001 �0.003 �0.001
Constant �6.67 �7.528 �40.193 �2.497

a Cougar sex (1¼ F, 2 ¼M).
b Cougar age (1 ¼ sub-ad, 2 ¼ ad).
c No. of location fixes divided by the proportion of successful fixes over the duration of the cluster.
d Binary day period (0 ¼,1-day period, 1 ¼.1-day period spent at the cluster).
e Average distance of all points at the cluster from the geometric center of the cluster.
f Season (0 ¼ summer, 1 ¼ winter).
g Terrain ruggedness.
h Wet openings.
i Mixed forest (deciduous and conifer).
j Natural openings.
k Clear-cuts.

Table 6. Proportion of the true composition of each prey species predicted
by the top multinomial model distinguishing prey species at cougar kill
locations along the central east slopes of Alberta’s Rocky Mountains,
December 2005 to August 2007, for each of 5 randomly assigned partitions
of the data. A value of 1.00 represents correct prediction.

Species
Partition

1
Partition

2
Partition

3
Partition

4
Partition

5 x̄ SD

Deer 1.12 1.20 1.24 1.20 1.20 1.19 0.04
Elk 0.44 0.00 0.00 0.00 0.37 0.16 0.22
Moose 1.50 0.71 0.58 0.85 0.92 0.91 0.35
Horse 1.00 0.33 0.50 0.00 0.25 0.41 0.37
Other 0.08 0.30 0.33 0.36 0.40 0.29 0.12

Figure 1. Percentage of non-kill clusters, kill clusters, and model-predicted
kill clusters retained at 3 levels of simulated fix success for 680 non-kill
clusters and 260 kill clusters generated by 4 cougars with .60% initial fix
success in west-central Alberta, December 2005 to August 2007.
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Webb et al. 2008), then rule-based algorithms such as the
one we have developed for identifying clusters serve equally

well and have the advantage of outputting user-defined
descriptive variables associated with the cluster (e.g., geo-
metric center of cluster, no. of 24-hr periods at a cluster) in
one step.

Although the total number of kills we located during
snow-tracking sessions of GPS-radiocollared cougars was
small, it was encouraging to find that detection rates were
high (100% of the ungulate prey had GPS location clusters
associated with them). Moreover, simulated fix success
reduction demonstrated that clusters at locations where prey
.8 kg were found were exceptionally robust to fix loss
(because of the large number of fixes originally obtained),
indicating that a cluster is likely to form at locations where
prey .8 kg were handled. However, our small sample of
snow-tracking data for GPS-collared cougar in winter and

our lack of an independent evaluation technique for
detection rates in summer imply that further tests of this
conclusion are warranted. In general, success of GPS
clusters for locating cougar-killed prey, even when fix
success is low, is likely due to this predator’s long handling
times (even for prey 8–40 kg) and high fidelity to kill
locations. Differences in handling behavior between solitary
predators such as cougar and group-hunting predators such
as wolves may partially explain why recent applications of
GPS telemetry for estimating wolf kill rate report much
lower detection rates than we found (Sand et al. 2005,

Zimmermann et al. 2007, Webb et al. 2008). We suspect
that future applications of GPS cluster techniques will work
best for large carnivores that, like cougar, display high
fidelity to kill locations and have long handling times.

The generally low and variable fix success observed in our

study is consistent with other deployments of various types
of GPS collars on cougars (Anderson and Lindzey 2003,
Land et al. 2008). Surprisingly, fix success did not bias kill
rate or prey composition estimates until it was reduced
below 45% and the bias did not become severe until it fell
below 30%. Although fix success on cougar GPS collars
may generally be high enough for bias to be avoided when
prey are handled, it would still be possible to fail to detect
cougar predation events (prey .8 kg) if prey were killed but
not consumed. In Scandinavia, GPS-collared wolves occa-
sionally failed to produce location clusters at kills when

human disturbance truncated prey handling (Zimmermann
et al. 2007). Similar situations are possible for cougars,
especially in multi-predator systems where encounter
competition occurs between cougars and other large
carnivores (Murphy et al. 1998, Ruth 2003). We docu-
mented several instances of wolf and bear visits to cougar kill
sites, including a number of usurpations of cougar kills by
dominant predators (K. Knopff, University of Alberta,
unpublished data); however, most cougar displacements
occurred after cougars had begun handling prey, and in only
6 cases (,1% of kills we visited) was the carcass usurped

after collars obtained only 2–4 location fixes. Therefore, it is

probably rare for cougars to handle prey .8 kg for such a
short duration that clusters fail to be produced.

Estimates of behavioral parameters of predation also can
be biased if cougars consume carcasses of animals they did
not kill, creating GPS telemetry location clusters at
scavenging sites that are misclassified as kills. Anderson
and Lindzey (2003) were unable to address the influence of
scavenging on cougar kill-rate estimation because of
technological limitations but suggested the influence would
be minor because cougars were believed to scavenge
infrequently. However, this potential bias can be addressed
directly by employing collars from which GPS data can be
downloaded regularly to ensure the interval between cluster
creation and field visitation is sufficiently short that cause of
death can be identified. Using downloadable collars, we were
able to identify 37 clear instances of scavenging (approx. 5%
of all clusters where we found carcasses) and remove these
from our kill sample, diminishing the effect of this form of
bias.

Finally, the simple act of measuring or marking has been
shown to affect the quality of inference that can be made in

Figure 2. Relationship between the proportion of a 180-day period
monitored and (A) mean absolute error (%) in kill rate estimates and (B)
mean absolute error (%) in prey composition estimates obtained using
1,000 simulated sample periods drawn from continuous 180-day monitor-
ing sessions for 10 cougars in west-central Alberta, December 2005 to
August 2007. Ninety-five–percent confidence intervals bracket each error
estimate. The best fit (linear or quadratic) curve and their equations are
displayed.
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certain ecological studies (Cahill et al. 2001, Jackson and
Wilson 2002). The GPS collars we used were not especially
heavy (,2% of cougar bodyweight) but were bulky. If
wearing a collar did affect cougar predatory behavior, it
introduced an unknown bias into our estimates of predation
parameters. Future studies capable of assessing this potential
source of bias would be valuable.

Although we demonstrate that GPS cluster techniques can
be expanded beyond Anderson and Lindzey’s (2003)
application to ungulates and used to identify other prey
.8 kg killed and consumed by cougars wearing collars with
a 3-hour fix rate, prey ,8 kg (e.g., snowshoe hare) are likely
to be underestimated by this technique. Such small prey are
easily consumed by a cougar in one feeding session spanning
,3 hours (K. Knopff, unpublished data), resulting in the
lack of cluster creation. Moreover, small prey are often
entirely consumed (K. Knopff, unpublished data) and little
evidence of the predation event may be available, making the
kill difficult to find even if a cluster is created. Neonatal deer
might fall into this category if they are killed in the first few
weeks of life. Increasing fix rates to detect a greater
proportion of smaller prey is possible (Webb et al. 2008),
but creation of additional clusters to be visited in the field
may be prohibitively labor intensive.

An important finding of our study is that monitoring
periods must be long if accurate and precise estimates of
cougar kill rate and prey composition are required (Fig. 2).
Because handling time, search time, and species killed are all
variable, and because cougar predatory events occur
infrequently, long intervals of monitoring are required to
accumulate a sufficient number of inter-kill intervals and
prey types to encompass this variation. For a cougar with a
known 180-day kill rate of 0.7 prey .8 kg/week and a prey
composition consisting of 72.2% deer, for instance, 36-day
subsampling yielded kill rates between 0.38 and 1.55 prey
.8 kg/week and a diet of between 25% and 100% deer.
Consequently, prey selection or kill rate estimates derived
from large-carnivore sample units (i.e., individuals or
groups) monitored for short periods could lead to inappro-
priate conclusions about predator–prey dynamics and about
differences in predatory behavior (e.g., between regions,
seasons, time periods, or age–sex classes). Most studies of
large carnivore predation to date have not addressed this
potentially important issue. The duration of monitoring
required for quality parameter estimation will depend on the
variability and average length of inter-kill intervals and on
dietary diversity. Predators with shorter or less variable
inter-kill intervals and lower dietary diversity will require
shorter monitoring periods.

Where models can be employed for parameter estimation,
they may greatly reduce cost and effort associated with
monitoring over the duration necessary to generate quality
estimates. K-fold validation of our top logistic regression
model supports the assertion of Anderson and Lindzey
(2003) that such models can be used effectively to predict
cougar kill rates. Our best model, however, proved to be
quite different from the univariate number of nights at a

cluster model adopted by Anderson and Lindzey (2003).
Because cougars in our study displayed high fidelity to kill
locations, commonly produced non-kill (bed-site) clusters at
night, and occasionally produced clusters at predation events
with only diurnal locations associated with them, we used
the number of 24-hour periods to approximate Anderson
and Lindzey’s (2003) number-of-nights model. This uni-
variate model, however, did not perform well when
compared with other models in our candidate set (Akaike
wt¼ 0.00). Our much larger sample size, inclusion of non-
ungulate prey, and incorporation of a wider variety of
explanatory variables may account for the difference in
performance between studies. In addition, cougars in west-
central Alberta did not consistently use day beds .200 m
from the kill as they did in Wyoming (Anderson and
Lindzey 2003) and in California (Beier et al. 1995). In
regions where remote day beds are common, a covariate or
interaction term incorporating the proportion of nocturnal
fixes at a cluster may be an important addition to our model.
Although we suspect that our more comprehensive top
model might improve on the univariate model outside our
study area, we caution against its unguarded application.
External validation using a representative sample of age–sex
classes of cougars from several study areas will be required to
fully assess the model’s broader applicability. Such broad-
scale meta-analyses should be possible in the near future
given the prevalence of GPS collar use in contemporary
studies of cougar ecology.

An essential caveat for the predictive success of our logistic
regression models was the appropriate selection of the
probability cutoff used to distinguish kills from non-kills
(Table 3). A probability cutoff of 0.5 is automatically
applied by most statistical software packages, and there may
be some statistical benefits associated with its use (Hosmer
and Lemeshow 2000). However, if prediction is the primary
goal, cutoff selection using sensitivity–specificity analysis is
preferred (Hosmer and Lemeshow 2000). Use of a 0.5 cutoff
in the wolf kill rate model of Zimmermann et al. (2007),
therefore, may have resulted in the inappropriate conclusion
that the model was of little predictive use. We would have
concluded similarly if we applied only a 0.5 cutoff when
evaluating our kill model (Table 3). However, the blind
application of sensitivity–specificity–defined optimal cutoffs
also should be avoided (Fielding and Bell 1997). Estimating
the spatial distribution of predation risk, for instance,
requires that kill locations are identified on a landscape and
related to habitat characteristics (e.g., Hebblewhite et al.
2005, Kauffman et al. 2007). Using the optimal cutoff of
0.22 to identify kill locations would result in the
incorporation of many non-kill locations (false positives)
into the sample, resulting in substantial model contami-
nation, which could be reduced by selecting a more
conservative cutoff (e.g., 0.5 or higher). Conversely, when
using the logistic model to improve field efficiency by
eliminating some non-kill clusters from the visited sample
while retaining most kills, a cutoff well below the optimum
should be employed. The appropriate probability cutoff
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level, therefore, must be selected for each intended
application of the logistic model.

Unfortunately, the multinomial models we used to predict
cougar prey composition were not nearly as useful. The
reasonable classification success we experienced was an
artifact of the large number of deer in the sample and the
propensity for the model to predict deer. Webb et al. (2008)
obtained an equivalent result when using multinomial
models to separate rare events (large or small prey) from
each other and from a common event (no prey) at wolf GPS
telemetry clusters. Webb et al. (2008) reported high model
classification success (88%), but the ability to predict rare
events (kills) was poor and the model misclassified 82% of
small prey and 40% of large prey as non-kills. Precise
estimates of prey composition are critical for certain
management and conservation scenarios such as identifying
disproportionate population-level prey selection, which can
lead to asymmetrical apparent competition (Chaneton and
Bonsall 2000, Cooley et al. 2008), or detecting predators
specializing in small populations of alternate prey (Knopff
and Boyce 2007). For such applications, the underrepre-
sentation of non-deer prey in our model predictions is
unacceptable. The failure of multinomial models to
effectively predict cougar prey species composition in
west-central Alberta, however, does not preclude the use
of such models to predict prey composition for other
predators or for cougars in other places, especially where
prey exhibit strong spatial segregation.

MANAGEMENT IMPLICATIONS

Studies of cougar predatory behavior conducted prior to the
advent of GPS collar technology were constrained by
available sampling techniques, resulting in estimates of
behavioral parameters of predation that were generally
derived from small sample sizes and short monitoring
periods. Thus, the scope of appropriate inference and
hypothesis-testing regarding cougar predation has been
limited. Global Positioning System telemetry cluster
techniques offer a substantial improvement in efficiency
for estimating these parameters, allowing detailed monitor-
ing of predation histories over long periods for large
numbers of cougars simultaneously. Although we found
that we could estimate cougar kill rate using models alone,
field visitation yields far better data and is a superior
alternative when resources permit. We therefore recommend
that researchers and managers wishing to understand and
quantify the effects cougars have on populations of prey use
logistic model probability to direct field visitation when
estimating parameter values. Field visitation is especially
crucial in multi-prey systems where apparent competition or
individual cougar specialization is suspected and their
identification is important for effective ungulate manage-
ment. Proper application of GPS cluster techniques over
sufficient monitoring periods will promptly remedy the
current paucity of detailed predation histories for individual
cougar, improving the quality of parameter estimates and
providing opportunities to enhance hypothesis testing and

perhaps to resolve some of the controversy surrounding the
effects cougars and other large carnivores have on their prey.
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